Collection-Based Long-Term Preservation
by

Reagan Moore, Chaitan Baru, Amarnath Gupta, Bertram
Ludaescher, Richard Marciano, Arcot Rajasekar

San Diego Supercomputer Center
San Diego, California

Submitted to
National Archives and Records Administration

June 1999

19990716 068
DISTRIBUTION STATEMENT A -
ApproqutorPublig Release |

DTIC QUALITY INSPECTRD 4

AT 9 9-10-]92%

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of the
National Archives and Records Administration or others supporting the San Diego
Supercomputer Center.

il

Table of Contents

1. INTRODUCTION 1
2. TECHNICAL ISSUES .3
2.1 MANAGING CONTEXT .1.eevvvvieiereeeessreeeersssesessseesessasssesssresssssesesosssssesisssessssssssssssssassssssssasssssanessssessss 3
2.2 MANAGING PERSISTENCE........uvteiiivveeiierreesiirreesinseesesstesssssssssssssssessssasessssssssssssnnessessassessssensessonsassss 4
2.3 MANAGING SCALABILITY ..vvvvereeiieessvrsereesiossseseassessesssssesesessossssnssseesessssssasssssssssessssssssnsersessessossonnne 6
2.4 MANAGING HETEROGENEITY OF DATA RESOURCESevvtieverrerrrrereieiesmnnnivereesssissassininmensessessasonsaesons 8

3. IMPLEMENTATION STRATEGY 11
3.1 GENERAL ARCHITECTUREccecoiieittrreeriesinrraneeessessssneneessnsorstresssssssesisssseseessssesessonansarsessssessonsenness 11

S Lo L AFCHIVE. ..ucveeeeereniirireiieeeiiiieiieeeesreesssiesessersessttaseseesassssstastessareantnssnseetartarssseestsriassassaneesansosasasnes 12
3.1.2 Data HARALING SYSIEM c..ccvuerreiereirereeerriseessessineseesssssssssssssssssessessssesssesasesarsenessoessseessessassnsesaes 14

3.1.3 Collection MAnGGEMENL...........c.ccuivereerrrereeereriesieereee e s esetneesans s ssatsssssesassessssssontssssnesssraoas 15

3.2 PERSISTENT ARCHIVE ASSESSMENT.....ccciitttttttirireriereeeiertaesentetsetstestesseesssrsessessssesesinsessensasmsssssnsessne 18
3.2.1 USAQE MOAELS......ceveeneeriniiiiiiriiiiiieiinrinit et sttt aa b s sas s aa b sas e sa s sns s be e 19

3.2.2 Operational SYSIENISceceeivrireiisicrnisiisesire st srass e ee s r s asseses shbesasssbtasssn e srasans 24

4. COLLECTION SUPPORT, GENERAL REQUIREMENTS 27
4.1 COLLECTION PROCESS DEFINITIONvttrtieieirraraeeessressvernressesesisusesesssssassorisssassneessssesassnnansorssssssssanes 27
4.2 SUMMARY INFORMATION ACROSS ALLCOLLECTIONS. .11vvteeeeiiiiurareeeeseerissesnsreererserserssssrssneesesssssssnnns 30

5. COLLECTION SUPPORT - E-MAIL POSTINGS 35
5.1 "LONG-TERM PRESERVATION" INFORMATION IMODELuvuviriereieniiureeereressasissnsrneneneesessossnrnerseseess 36
5.2 INGESTION PROCESS.c0uvteteouerteruetsiossessssiassesssesossarsessassessssstssssssssssessssseesssssssessnssssssessssesesrsrsseesns 42
5.3 STORAGE REQUIREMENTSeceiciiiurtereersiesiersesesersessinteessessissserneresssnssssnssrsssassesnenssssssssssaessssossinsessees 44
5.4 DATA ACCESS REQUIREMENTS. .. .ucvtieteeiicusereeseenrenssrreersermsssasessesssessssssssessesssssssossnsnssesssssssossenenenes 44
5.5 LONG TERM PRESERVATION REQUIREMENTSccieuuturererereissenrerrseransonsansarnarsesessssonssrsssanessssssenssssssees 46

6. COLLECTION SUPPORT - TIGER/LINE '92 (CENSUS BUREAU) 47
6.1 INFORMATION MODELL......0c0ceirteerisueesisseesisssessrossseeronssesssssessssissesssssesssarsssssesssseenssssnareesssssesssssnssssas 47
6.2 INGESTION PROCESS.ceottureereeeissarerrrreesisesssssesssossesssssssesessasssstesssssensonssnssssassessssssssonssseasessessonssnenes 52

7. COLLECTION SUPPORT - 104™ CONGRESS 53
7.1 INFORMATION MODEL......ccoovvtietserireinerreesierersnsesessssesssnsnsssessososssssssesssssssssssassasassssesssransennensesesssssans 54
7.2 INGESTION PROCESS.ceiertetiesseetsesseriressersirsseseessssesiosssssesssssesssssssssassssssssssesesasssessssssssessanssnsessosessss 58
7.3 STORAGE REQUIREMENTSccoiiiiiieiiieeiieeiiseieaeisasesiisssessessesssnsssssnssnsssssrsasessensesesnesesessessessssesssesmessees 59

8. COLLECTION SUPPORT - VOTE ARCHIVE DEMO 1997 (VAD97) 61
8.1 INFORMATION MODEL....1cccciouvereisrnesensensiensersessssssissssseesssrsesisssessssssssesssssessessssssesssssreessassnsessosseessssne 62
8.2 INGESTION PROCESS. ... 1veteeeeieiisuenrererersesunreersieniossarsressoesssnssessssssnesssssssssssssesssisnsrsensesessessonsnrssseassens 62
8.3 LONG TERM PRESERVATION REQUIREMENTSccoivuretriieienivererseerierisssrssresserssesssssntsensesessssssssnraaseeses 62

9. COLLECTION SUPPORT - ELECTRONIC ARCHIVING PROJECT (EAP) 67
0.1 INFORMATION MODELcceiiiitiesieieseisessssessssssessensssssssssssssssssssssssnsssssssnsssssnssssnssnsenssssereeseesseesaesanseens 68
0.2 INGESTION PROGCESS. .. .t tveeutuutunstnuennssusssesanssanssssssssssnsssssasssssssssnsssssessssssssssssrssssssssssasassssssansansensanns 68
10. COLLECTION SUPPORT - COMBAT AREA CASUALTIES CURRENT FILE (CACCF)......69
10.1 INFORMATION MODEL .. .vuvvieeteereiiisereerersisisnseaeeessessisssssesssssssssassessesssssassssssnsasassassssssossssnssessssosans 70
10.2 INGESTION PROCESS.....ccuuvttiterieiirreeiisrereiisseseisesssossesssssssssssssstesssrnsessssinsassssssssesssssnessessneessnnneess 72
10.3 STORAGE REQUIREMENTS......vvvtivitereesivereerarseeeressereissressnsssssassunsesssssessansnnessesasentessssassessossesessosseses 73

iii

11. COLLECTION SUPPORT - PATENT DATA (USPTO)

12. COLLECTION SUPPORT - IMAGE COLLECTION (AMICO)

12.1 INFORMATION MODELcocvvrevetisirentrrrsessressruvenessssssscsusssassesssssnsssnersessssesssssnsasss
12.2 INGESTION PROCESS......cciiiiiiiiiiiiiieiiieeieeseeeeseeesessesaesassesesessessessssenssssassesansansesenaes
12.3 DATA ACCESS REQUIREMENTS.....uuuutuuetrerssnreernanreresssinrasrissessrssmeesessenssmmesssssnsnnses

13. COLLECTION SUPPORT - JITC COLLECTION

81

.......................... 82
.......................... 84
.......................... 84

87

13.1 INFORMATION MODELcuuvurrereiierernrneressieiinminesesiersismarsesssssacssessnsessessasssssnmassesens
13.2 INGESTION PROCESS. .. .ceieiteieiiitiiiieietiieiiesissasessssssssssnsssssassssssnsssssannnnnsssriessessesess

.......................... 88

14. REMAINING TECHNICAL ISSUES

14.1 RESEARCH OPPORTUNITIEScceeiieitteriuessunnsenseseesnsnsesserssmssessessensenssnnsnssssrsesneses
14.2 RESEARCH AND DEVELOPMENT TASKScooeiiiiiitenninnennnnnennnnnnnnnnnnnnnnsnnressnenesenes
T4.3 SUMMARY ...oiiiiiiiieiiiiiieiieeeiee et ie e eeeeeseeseiesses e e s er e n s ssarnss sanasnssnnssneraennenssanss

REFERENCES

91

.......................... 93

.......................... 94
95

APPENDIX A: E-MAIL POSTINGS

APPENDIX B: TIGER/LINE’92 ADDITIONAL INFORMATION

97

99

APPENDIX C: 104TH

APPENDIX D: VAD97

'APPENDIX E: EAP

APPENDIX F: VIETNAM

APPENDIX G: AMICO

APPENDIX H: JTIC

iii

123

126

128

130

132

134

77

Abstract

The preservation of digital information for long periods of time is becoming feasible
through the integration of archival storage technology from supercomputer centers,
information models from the digital library community, and preservation models from the
archivist’s community. The supercomputer centers provide the technology needed to
store the immense amounts of digital data that are being created, while the digital library
community provides the mechanisms to define the context needed to interpret the data.
The coordination of these technologies with preservation and management policies
defines the infrastructure for a collection based persistent archive [1]. This report
demonstrates the feasibility of maintaining digital data for hundreds of years through
detailed prototyping of persistent archives for nine different data collections.

1. Introduction

Supercomputer centers, digital libraries, and archival storage communities have common
persistent archival storage requirements. Each of these communities is building software
infrastructure to organize and store large collections of data. An emerging common

* requirement is the ability to maintain data collections for long periods of time. The
challenge is to maintain the ability to discover, access, and display digital objects that are
stored within the archive, while the technology used to manage the archive evolves. We
have implemented an approach based upon the storage of the digital objects that comprise
the collection, augmented with the meta-data attributes needed to dynamically recreate
the data collection. This approach builds upon the technology needed to support
extensible database schema, which in turn enables the creation of data handling systems
that interconnect legacy storage systems.

The long-term storage and access of digital information is a major challenge for federal
agencies. The rapid change of technology resulting in obsolescence of storage media,
coupled with the very large volumes of data (terabytes to petabytes in size) appears to
make the problem intractable. The concern is that when the data storage technology
becomes obsolete, the time needed to migrate to new technology may exceed the lifetime
of the hardware and software systems that are being used. This is exacerbated by the
need to be able to retrieve information from the archived data. The organization of the
data into collections must also be preserved in the face of rapidly changing technology.
Thus each collection must be migrated forward in time onto new management systems,
simultaneously with the migration of the individual data objects onto new media. The
ultimate goal is to maintain not only the bits associated with the original data, but also the
context that permits the data to be interpreted. In this paper we present a scalable
architecture for managing media migration, and an information model for managing
migration of the structure of the context. For relational databases, the information model
includes the schema for organizing attributes and the data dictionary for defining
semantics. For hierarchical databases, the information model includes a representation of
the hierarchical structure along with the data dictionary.

We rely on the use of collections to define the context to associate with digital data. The
context is defined through the creation of hierarchical representations for both the digital
objects and the associated data collection. Each digital object is maintained as a tagged
structure that includes the original bytes of data, as well as attributes that have been
defined as relevant for the data collection. The collection context is defined through use
of both hierarchical and relational representations for organizing the collection attributes.
By using infrastructure independent representations, the original context for the archived
data can be maintained. A collection-based persistent archive is therefore one in which
the organization of the collection is archived simultaneously with the digital objects that
comprise the collection [1].

A persistent collection requires the ability to dynamically recreate the collection on new
technology. For a solution, we consider the integration of scalable archival storage
technology from supercomputer centers, infrastructure independent information models
from the digital library community, and preservation models from the archivist’s
community. An infrastructure that supports the continuous migration of both the digital
objects and the data collections is needed. Scalable archival storage systems are used to
ensure that sufficient resources are available for continual migration of digital objects to
new media. The software systems that interpret the infrastructure independent
representation for the collections are based upon generic digital library systems, and are
migrated explicitly to new platforms. In this system, the original representation of the
digital objects and of the collections does not change. The maintenance of the persistent
archive is then achieved through application of archivist policies that govern the rate of
migration of the objects and the collection instantiation software.

The goal is to preserve digital information for at least 400 years. This report examines
the technical issues that must be addressed, evaluates possible implementations, assigns
metrics for success, and examines business models for managing a collection-based
persistent archive. The applicability of the results is demonstrated by examination of
nine different data collections, provided by the USPTO and other federal/state agencies.
The report is organized into sections to provide a description of the scaling issues, a
generic description of the technology, a comparative synopsis of the nine collections, and
detailed descriptions of the approaches that were used for each collection.

2. Technical Issues

The preservation of the context to associate with digital objects is the dominant issue for
collection-based persistent archives. The context is traditionally defined through
specification of attributes that are associated with each digital object. The context is also
defined through the implied relationships that exist between the attributes, and the
preferred organization of the attributes in user interfaces for accessing the data collection.
We identify three levels of context that must be preserved:

 Digital object representation. For semi-structured data, the organization of the
components must be specified, as well as the elements that are used to define the
attributes to associate with the collection. An example is a multi-media digital
object that has associated text, images, and video. A hierarchical representation is
needed to define the relationship between the components, including elements
consisting of tagged meta-data attributes.

e Data collection representation. The collection also has an implied organization,
which today may be specified through a relational schema or a hierarchical
structure. A schema is used to support relational queries of the attributes or meta-
data. It is possible to reorganize a collection into multiple tables to improve
access by building new indexes, and in the more general case, by adding
attributes. The structure used to define the collection attributes can be different
from the structure used to specify a digital object within the collection. While
relational representations can be used today, in the future, alternate
representations may be based upon hierarchical or multi-dimensional algorithms.

e Presentation representation. The user interface to the collection can present an
organization of the collection attributes that is tuned to meet the needs of a
particular community. Researchers may need access to all of the meta-data

. attributes, while students are interested in a subset. The structure used to define
the user interface again can be different from the schema used for the collection
organization. Each of these presentations represents a different view of the
collection. Re-creation of the original view of a collection may or may not be
possible.

Digital objects are used to encapsulate each data set. Collections are used to organize the
context for the digital objects. Presentation interfaces are the structure through which
collection interactions are defined. The challenge is to preserve all three levels of context
for each collection.

2.1 Managing Context

Management of the collection context is made difficult by the rapid change of
technology. Software systems used to manage collections are changing on five to ten-
year time scale. It is possible to make a copy of a database through a vendor specific
dump or backup routine. The copy can then be written into an archive for long term
storage. This approach fails when the database is retrieved from storage, as the database
software may no longer exist. The archivist is then faced with migrating the data
collection onto a new database system. Since this can happen for every data collection,

the archivist will have to continually transform the entire archive. A better approach
is needed.

An infrastructure independent representation is required for the collection that can be
maintained for the life of the collection. If possible, a common information model should
be used to define the hierarchical structures associated with the digital objects, the
collection organization, and the presentation interface. An emerging standard is the
eXtended Markup Language (XML) [2]. XML provides an information model for
describing hierarchical structures through use of nested elements. Elements are
essentially tagged pieces of data. A Document Type Definition (DTD) provides the
particular hierarchical organization that is associated with a given document or digital
object. XML Style Sheet Language (XSL) can be used to define the presentation style to
associate with a DTD. It is possible to use multiple style sheets for a given DTD. This
provides the flexibility needed to represent the context for the user interface into a
collection, as well as the structure of the digital objects within the collection.

Although DTDs were originally applied to documents, they are now being applied to
arbitrary digital objects, including the collections themselves. XML DTDs can be used to
define the structure of digital objects, specify inheritance properties of digital objects,
and define the collection organization and user interface structure. DTDs can also be
used to define the structure of highly regular data or semi-structured data. Thus DTDs
are a strong candidate for a uniform information model.

While XML DTDs provide a tagged structure for organizing information, the semantic
meaning of the tags used within a DTD is arbitrary, and depends upon the collection. A
data dictionary is needed for each collection to define the semantics. A persistent
collection therefore needs the following components to define the context:

e Data dictionary for collection semantics,
DTD for digital object hierarchical structure,
DTD for collection hierarchical structure,
DTD for user interface structure,
XSL style sheets for presentation of each DTD.

2.2 Managing Persistence

Persistence is achieved by providing the ability to dynamically reconstruct a data
collection on new technology. While the software tools that do the reconstruction have to
be ported to work with each new hardware platform or database, the collection can
remain in its original format within an archive. The choice of the appropriate standard
for the information model is vital for minimizing the support requirements for a
collection-based persistent archive. The goal is to store the digital objects comprising the
collection and the collection context in an archive a single time. This is possible if any
changes to the information model standard contain a superset of the prior information
model. The knowledge required to manipulate a prior version of the information model
can then be encapsulated in the software system that is used to reconstruct the collection.

With this caveat, the persistent collection never needs to be modified, and can be
held as infrastructure independent bit-files in an archive.

- The re-creation or instantiation of the data collection is done with a software program that
uses the DTDs that define the digital object and collection structure to generate the
collection. While the current prototypes rely on a different collection instantiation
program for each collection, the goal is to build a generic program that works with any
DTD. This will reduce the effort required to support dynamic reconstruction of a
persistent data collection to the maintenance of a single software system.

Maintaining persistent digital objects requires the ability to migrate data to new media.
The reasons for continuing to refresh the media on which the collection is maintained are:
¢ Avoid loss of data because of the finite lifetime and resulting degradation of the
media.

e Minimize storage costs. New media typically store at least twice as much data as
the prior version, usually at the same cost per cartridge. Thus migration to new
media results in the need for half as many cartridges, decreased floor space, and
decreased operating costs for managing the cartridges. Note that for this scenario,
the media costs for a continued migration will remain bounded, and will be less
than twice the original media cost. The dominate cost to support a continued
migration onto new media is the operational support needed to handle the media.

e Maximize the ability to handle exponentially increasing data growth. Many data
collections are doubling in size in time periods shorter than a year. This means
the effort to read the entire collection for migration to new media will be less than
the effort to store the new data that is being collected within that year. Migration
to higher density media is the only way to keep the number of cartridges to a
manageable level.

To facilitate migration and access, supercomputer centers keep all data in tape robots.
For currently available tape (cartridges holding 20 GB to 50 GB of data), a single tape
robot is able to store 120 terabytes to 300 terabytes of uncompressed data. By year 2003,
a single tape robot is expected to hold 6000 terabytes, using 1-terabyte capacity
cartridges. The storage of petabytes (thousands of terabytes) of data is now feasible.

Given that the collection context and the digital objects can be migrated to new media,
the remaining system that must be migrated is the archival storage system itself. The
software that controls the tape archive is composed of databases to store the storage
location and name of each data set, logging systems to track the completion of
transactions, and bitfile movers for accessing the storage peripherals. Of these
components, the most critical resource is the database or nameserver directory that is
used to manage the names and locations of the data sets. At the San Diego
Supercomputer, the migration of the nameserver directory to a new system has been done
twice, from the DataTree archival storage system to the UniTree archival storage system,
and from UniTree to the IBM High Performance Storage System [3]. Each migration
required the read of the old directory, and the ingestion of each data set into the new
system. In Table 2-1, the times and number of data sets migrated are listed. Note that
even though the number of files dramatically increases, the time required for the

migration decreased. This reflects advances in vendor supplied systems for
managing the name space. Based on this experience, it is possible to migrate to new
archival storage systems, without loss of data.

System Migration Number of files Time (days)
DataTree to UniTree 4 million 4
UniTree to HPSS 7 million 1

Table 2-1. Migration of archival storage system nameserver directory

One advantage of archival storage systems is their ability to manage the data movement
independently from the use of the data. Each time the archival storage system was
upgraded, the new version of the archive was built with a driver that allowed tapes to be
read from the old system. Thus migration of data between the archival storage systems
could be combined with migration onto new media, minimizing the number of times a
tape had to be read.

The creation of a persistent collection can be viewed as the design of a system that
supports the independent migration of each internal hardware and software component to
new technology. Management of the migration process then becomes one of the major
tasks for the archivist.

2.3 Managing Scalability

A persistent archive can be expected to increase in size through either addition of new
collections, or extensions to existing collections. Hence the architecture must be
scalable, supporting growth in the total amount of archived data, the number of archived
data sets, the number of digital objects, the number of collections, and the number of
accesses per day. These requirements are similar to the demands that are placed on
supercomputer center archival storage systems. We propose a scalable solution that uses
supercomputer technology, based on the use of parallel applications running on parallel
computers.

Archival storage systems are used to manage the storage media and the migration to new
media. Database management systems are used to manage the collections. Web servers
are used to manage access to the system. A scalable system is built by identifying both
the capabilities that are best provided by each component, and the constraints that are
implicit within each technology. Interfaces are then constructed between the components
to match the data flow through the architecture to the available capabilities. Table 2-2
lists the major constraints that the architecture must manage for a scalable system to be
possible.

Archival storage systems excel at storing large amounts of data on tape, but at the cost of
relatively slow access times. The time to retrieve a tape from within a tape silo, mount

the tape into a tape drive, and ready the tape for reading is on the order of 15-20
seconds for current tape silos. The time required to spin the tape forward to the position
of the

Component Capability Constraints
Archive Massive storage Latency of access
Number of data sets
Database Large number of objects Access optimization
Query language
Web Server Ubiquitous access Presentation format
Storage capacity

Table 2-2. Architecture Components

desired file is on the order of 1-2 minutes. The total time can be doubled if the tape drive
is already in use. Thus the access time to data on tape can be 2-4 minutes. To overcome
this high latency, data is transferred in large blocks, such that the time it takes to transfer
the data set over a communication channel is comparable to the access latency time. For
current tape peripherals which read at rates from 10 MB/sec to 15 MB/sec, the average
data set size in an archive should be on the order of 500 MB to 1 GB. Since digital
objects can be of arbitrary size, containers are used to aggregate digital objects before
storage into the archive.

The second constraint that must be managed for archives is the minimization of the
number of data sets that are seen by the archive. Current archival storage nameservers
are able to manage on the order of 10 — 40 million data sets. If each data set size is on the
order of 500 MB, the archive can manage about 10 petabytes of data (10,000 TBs, or 10
million GBs). Archival storage systems provide a scalable solution only if containers are
used to aggregate digital objects into large data sets. The total number of digital objects
that can be managed is on the order of 40 billion, if one thousand digital objects are
aggregated into each container.

Databases excel at supporting large numbers of records. Note that the Transaction
Processing Council D benchmark [4] measures performance of relational databases on
decision support queries for database sizes ranging from 1 gigabyte up to 3 terabytes and
from 6 million to 18 billion rows. Each row can represent a separate digital object. With
object relational database systems, a binary large object or BLOB can be associated with
each row. The BLOBs can reside either internally within the database, or within an
external file system. In the latter case, handles are used to point to the location of BLOB.
The use of handles makes it feasible to aggregate digital objects within containers.
Multiple types of container technology are available for aggregating digital objects.
Aggregation can be done at the file level, using utilities such as the TAR program, at the
database level through database tablespaces, or at an intermediate data handling level
through use of software caches. All three approaches are demonstrated in the persistent
collection prototyping efforts described in section 4. The database maintains the
information needed to describe each object, as well as the location of the object within a

container and the location of the container within the storage system. A data
handling system is used to support database access to archival storage.

Queries are done across the attributes stored within each record. The time needed to
respond to a query is optimized by constructing indexes across the database tables. This
can reduce the time needed to do a query by a factor of a thousand, at the cost of the
storage space for the index, and the time spent in assembling the index. Persistent
collections may be maintained on disk to support interactive access, or they may be
stored in the archive, and rebuilt on disk when a need arises. If the collection is
reassembled from out of the archive, the dominant time needed for the process may be
the time spent creating a new index. Since archival storage space is cheap, it may be
preferable to keep both infrastructure independent and infrastructure dependent
representations of a collection. The time needed to load a pre-indexed database snapshot
is a small fraction of the time that it would take to reassemble and index a collection.
The database snapshot, of course, assumes that the database software technology is still
available for interpreting the database snapshot. For data collections that are frequently
accessed, the database snapshot may be worth maintaining.

The presentation of information for frequently accessed collections requires Web servers
to handle the user load. Servers function well for data sets that are stored on local disk.
In order to access data that reside within an archive, a data handling system is needed to
transfer data from the archive to the Web server. Otherwise the size of the accessible
collection may be limited to the size of the Web server disk cache. Web servers are
available that distribute their load across multiple CPUs of a parallel computer, with
parallel servers managing over 10 million accesses per day.

Web servers provide a variety of user interfaces to support queries and information
discovery. The preservation of the user interface requires a way to capture an
infrastructure independent representation for the query construction and information
presentation. Web servers are available that retrieve information from databases for
presentation. What is needed is the software that provides the ability to reconstruct the
original view of the collection, based upon a description of the collection attributes. Such
technology is demonstrated as part of the collection instantiation process.

2.4 Managing Heterogeneity of Data Resources

A persistent archive is inherently composed of heterogeneous resources. As technology
evolves, both old and new versions of the software and hardware infrastructure will be
present at the same time. An issue that must be managed is the ability to access data that
is present on multiple storage systems, each with possibly different access protocols. A
variant of this requirement is the ability to access data within an archive from a database
that may expect data to reside on a local disk file system. Data handling systems provide
the ability to interconnect archives with databases and with Web servers. Thus the more
general form of the persistent archive architecture uses a data handling system to tie each
component together. At the San Diego Supercomputer Center, a particular
implementation of a data handling system has been developed, called the Storage

Resource Broker (SRB) [5]. A picture of the SRB architecture is shown in Figure 2-
1 to illustrate the required components.

!

SEB Server

DB2, Oracle, Illustra, ChjectStore HPSS, UniTree UNIX, fip

Distribuied Storage Resources
(database systems, archival storage systems, file systems, fip)

Figure 2-1. SDSC Storage Resource Broker Architecture

The SRB supports the protocol conversion needed for an application to access data within
either a database, file system, or archive. The heterogeneous nature of the data storage
systems is hidden by the uniform access API provided by the SRB. This makes it
possible for any component of the architecture to be modified, whether archive, or
database, or Web server. The SRB Server uses a different driver for each type of storage
resource. The information for which driver to use for access to a particular data set is
maintained in the associated Meta-data Catalog (MCAT) [6,7]. The MCAT system is a
database containing information about each data set that is stored in the data storage
systems. New versions of a storage system are accessed by a new driver written for the
SRB. Thus the application is able to use a persistent interface, even while the storage
technology changes over time.

3. Implementation strategy

A collection based persistent archive can be assembled using a scalable architecture. The
scalable architecture relies upon parallel hardware and software technology that is
commercially available. The persistent archive requires the integration of three separate
components; archival storage, collection management, and access servers through the use
of a data handling system. The result is a system that can be modified to build upon new
technology on an incremental basis. For a persistent archive to work within this
migration environment, the data context must be maintained in an information
independent representation. The technology to instantiate the collection will have to be
migrated forward in time, along with the data handling system. The collection can be
kept as bit-files within the archive, while the supporting hardware and software systems
evolve.

3.1 General Architecture

The implementation of a persistent archive at SDSC is based upon use of commercially
available software systems, augmented by application level software developed at the San
Diego Supercomputer Center. The architecture software components are:
e Archival storage system — IBM High Performance Storage System (HPSS) [3]
Data handling system — SDSC Storage Resource Broker (SRB) [5]
Object relational database — Oracle version 7.3, IBM DB2 Universal Database
Collection management software — SDSC Meta-data Catalog (MCAT) [6,7]
Collection instantiation software — SDSC scripts
Collection ingestion software — SDSC scripts
Hierarchical data model — eXtended Markup Language — Document Type
Definition [2]
Relational data model — ANSI SQL Data Definition Language [8]
e DTD manipulation software — UCSD XML Matching and Structuring language
(XMAS) [9]
Web server — Apache Web server
e Presentation system — Internet Explorer version 5

The hardware components are:
e Archival storage system — IBM SP 8-node, 32-processor parallel computer, 180
TB of tape storage, three Storage Technology tape robots, and 1.6 TB of RAID
disk cache
e Data management system — Sun Enterprise 4-processor parallel computer
e Data ingestion platform — SGI workstation
e Network interconnect — Ethernet, FDDI, and HiPPI

Each of these systems is scalable, and can be implemented using parallel computing
technology. The efficiency of the archival storage system is critically dependent upon the
use of containers for aggregating data before storage. Three difference mechanisms have
been tried at SDSC:

11

e Unix utilities. The TAR utility can be used to aggregate files. For container
sizes of 100 MB, the additional disk space required is minimal. The
disadvantages are that the container must be read from the archive and
unpacked before data sets are accessed.

e Database tablespace. At SDSC, a prototype version of the DB2 UDB [10]
parallel object-relational database has been used to support large data
collections. The prototype database stores the digital objects internally within
tablespaces. The tablespaces can be stored within the HPSS archival storage
system, and retrieved to a disk cache on demand. This effectively increases
the database storage capacity to the size of the archive, while simultaneously
aggregating digital objects into containers before storage in the archive.

e Data handling software cache. The SDSC Storage Resource Broker supports
containers. Digital objects that are written into an archive through the SRB
are aggregated into a container on a disk cache. When the container is full,
the SRB writes the container into the archive. When data is referenced, the
container is retrieved from the archive and the data set is read directly out of
the container by the SRB.

3.1.1 Archive

The core of the architecture is the archival storage system, as it ultimately determines the
total capacity, data ingestion rate, and data migration support for the persistent archive.
The architecture of the HPSS [2,11] archive is shown in Figure 3-1. The system at SDSC
currently stores over 9 million files, with an aggregate size of 100 TB. Data movement
rates have been achieved that exceed 2 TBs of data storage per day. The system sustains
16,000 file operations per day, with the ability to handle over 100,000 file operations per
day. The HPSS system is accessed over high-speed networks through a High
Performance Gateway Node (HPGN). The HPGN supports multiple types of network
access, including a 100 MB/sec HiPPI network, 100 Mb/sec FDDI, and Ethernet. The
HPGN is directly connected to the nodes of the SP on which the HPSS software system
runs through the Trail Blazer 3 switch. The HPSS central control services run on one of
the four-processor nodes, while the bitfile movers that read/write data off of disk and tape
are distributed across seven of the SP nodes. By interconnecting the external networks
through the HPGN onto the SP switch, all of the mover nodes can be used in parallel,
sustaining high data throughput. By having disk and tape drives connected to each of the
mover nodes, data can be migrated in parallel to tape. Measured data movement rates
from the nodes to the HPGN are 90 MB/s for file sizes on the order of 10 MB.

12

Tape Mover
PVR (9490)

9490
Robot
Four

Drives

Figure 3-1. HPSS archival storage system

The system includes multiple backup systems for preserving the nameserver directory,
including mirroring of the directory on disk, backup of snapshots of the directory onto
tape, transaction logging of all changes to the directory, and reconciliation of the
transaction logs with the directory snapshots on a daily basis. To handle disasters, copies
of the critical data sets are maintained in a second HPSS archival storage system located
within another city. A description of the backup systems is given in [12]. The attention
paid to nameserver directory backup is of critical importance. If the nameserver directory
is lost, it will not be possible to provide the names for the files stored in the archive.

The system is scalable, through the addition of more nodes, disk, and tape drives. The
system will be upgraded to a capacity of 360 GB of uncompressed data in 1999 through
the acquisition of tape drives that write 20 GBs of data per cartridge. The system
supports data compression. For the scientific data sets stored at SDSC, the average

13

compression ratio is a factor of 1.5, implying the total capacity of the system will be
500 TB.

3.1.2 Data Handling System

The data handling system provides the ability to connect heterogeneous systems together.
We provide a detailed description of the SDSC data handling system to illustrate the
software infrastructure needed to provide location and protocol transparency. The data
handling infrastructure developed at SDSC has two components: the SDSC Storage
Resource Broker (SRB) [5] that provides federation and access to distributed and diverse
storage resources in a heterogeneous computing environment, and the Meta-data Catalog
(MCAT) [6] that holds systemic and application or domain-dependent meta-data about
the resources and data sets (and users) that are being brokered by the SRB. The SRB-

_ MCAT system provides the following capabilities:

e uniform APISs for access to heterogeneous file systems, databases, and archival
storage,

e protocol-transparency and location-transparency when accessing distributed systems,

e uniform name space abstraction over the file systems that are being brokered, ,

o meta-data-based access to files, thus supporting information discovery based on
domain and system-dependent meta-information stored along with (or extracted from)
the stored files,

e facilities for replication, copying or moving files across heterogeneous systems,
performing resource-level operations (proxy operations) on data before delivery to the
client, and

e an integrated encryption and authentication system that can range from no security to
fully encrypted and fully authenticated data transfer including security against man-

; in-the-middle security intrusions [13,14].

The SDSC Storage Resource Broker (SRB) is middleware that provides distributed
clients with uniform access to diverse storage resources in a heterogeneous computing
environment. Storage systems handled by the current release of the SDSC SRB include
the UNIX file system, archival storage systems such as UniTree, ADSM and HPSS, and
database Large Objects managed by various DBMSs including DB2, Oracle, and Illustra
(Figure 2-1). Currently, the system runs on supercomputers such as the CRAY C90,
CRAY T3E and IBM SP, and on workstations such as Sun, SGI, and DEC platforms. The
SRB API presents clients with a logical view of data sets stored in the SRB. Similar to .
the file name in the file system paradigm, each data set stored in SRB has a logical name,
which may be used as a handle for data operation. Unlike the file system where the
physical location of a file is implied in its path name through its mount point, the physical
location of a data set in the SRB environment is logically mapped to the data sets.
Therefore, data sets belonging to the same collection may physically reside in different

© storage systems. A client does not need to remember the physical mapping of a data set.
It is stored as the meta-data associated with the data set in the MCAT catalog. Data sets
in the SRB are grouped into a logical (hierarchical) structure called collections. The
collection provides an abstraction for:

14

e placing similar objects (possibly, physically distributed) under one collection
(e.g., image collections of a museum) and

o placing all dissimilar objects that have a common connection under one
abstraction (e.g., all the text paragraphs, images, figures, and tables of a
document).

The SRB supports data replication in two ways. One can replicate an object during object
creation or modification. To enable this, SRB and MCAT allow the creation of logical
storage resources (LSR) which are a grouping of two or more resources. When an
application creates or writes a data set in these logical resources, then the operations are
performed on all the grouped resources. The result of using a LSR is that a copy of the
data is created in each of the physical resources belonging to the logical resource. It is
possible to specify that the write operation is successful if k of the n copies are created.
The user can modify all the copies of the data by writing to the data set with a “write all.”
However, this operation can lead to an inconsistency if there is a failure in the middle of
the operation. The SRB also provides an off-line replication facility to replicate an
existing data set. This operation can also be used for synchronization purposes. When
accessing replicated objects, SRB will open the first available replica of the object as
given by a list from MCAT. The SRB also provides authentication and encryption
facilities [13,14], access control list and ticket-based access [15], and auditing capabilities
to give a feature-rich environment for sharing distributed data collections among users
and groups of users.

The design of the SRB server is based on the traditional network connected client/server
model but has the additional capability of federation. Once a connection from a client is
established and authenticated, a SRB agent is created that brokers all the operations for
that connection. A client application can have more than one connection to a SRB server
and to as many servers as required. The federation of SRBs implies that a client connects
to any SRB server while accessing a resource that is brokered by another server. An inter-
SRB communication protocol supports the federation operation. The SRB communicates
with MCAT to obtain meta-information about the data set, which it then uses for
accessing the data set.

3.1.3 Collection Management

Current information models include relational representations of data collections, such as
the Data Definition Language, DDL [8]. Relational representations are used by relational
databases to define how queries can be decomposed across the multiple tables that are
used to hold the meta-data attributes. It is possible to generate arbitrary mappings
between a DTD hierarchical representation, and a DDL relational representation for a
collection. A preferred correspondence between the two representations must be defined
if a relational database is used to assemble the collection.

In section 3.2.2 we describe the process we used to dynamically create a collection. The
demonstration is based upon digital library technology that has been developed at SDSC.

15

While the current technology builds upon object relational databases, in the future it
may be possible to work directly with hierarchical databases such as Excelon (an XML
variant of ObjectStore) and Ariel (an XML version of O2). This would avoid the need to
map between hierarchical and relational schemas.

A detailed description of the SDSC MCAT system is provided to illustrate the
complexity of the information management software needed to describe and manage
collection level meta-data. The SDSC MCAT is a database catalog that provides a
repository of meta information about digital objects. Digital object attributes are
separated into two classes of information within the MCAT:

e System-level meta-data that provides operational information. These include
information about resources (e.g., archival systems, database systems, etc. and
their capabilities, protocols, etc) and data objects (e.g., their formats or types,
replication information, location, collection information, etc.).

e Application-dependent meta-data that provides information specific to particular
data sets and their collections (e.g., Dublin Core [16,17] values for text objects).

Both of these types of meta-data are extensible, i.e., one can add and/or remove
attributes. Internally, MCAT keeps schema-level meta-data about all of the attributes that
are defined. The schema-level attributes are used to define the context for a collection
and enable the instantiation of the collection on new technology. The attributes include
definition of:

e Logical Structure: When a set of meta-data is registered with MCAT, one needs to
identify a logical structure in which the rest of the meta-data will be organized.
The logical structure should not be confused with database schema and are more
general than that. For example, we have implemented the Dublin Core database
schema [16] to organize attributes about digitized text. The attributes defined in
the logical structure that is associated with the Dublin Core schema contains
information about the subject, constraints, and presentation formats that are
needed to display the schema along with information about its use and ownership.

e Attribute Clusters: An attribute cluster is a set of attribute names that are logically
interconnected and that have a one-to-one mapping among them. One can view
them as a (single or a set of) normalized table(s) in a database context. For
example, in the Dublin Core, publisher, name, address, and contact information
form a cluster. Contributor name and contributor type form a second cluster; title
and its type form yet another cluster, and so on. Similarly in our system-level
MCAT core meta-data, we have one cluster for each data replica containing the
type, location, and size of the data objects. This aids the implementation of
relational joins across the meta-data tables, since each replica has only one value
for these properties and these properties provide the physical characteristics of the
object. For each cluster, MCAT keeps information about any constraints and
comments that can be searched when using the attribute, along with information
about use-privileges and grant-of-use-privileges for the cluster. For each attribute,

16

MCAT keeps more than 20 different types of information including its physical,
logical and input and output characteristics [9].

e Token Attributes: Token attributes have a specific function (compared to other
attributes); they capture some simple semantic information about the domain of
discourse. In the simplest sense, one can use the token attributes to provide the
domain of discourse for an attribute or a set. One can also use the token attribute
to capture semantic translation between discipline domains (e.g., common names
vs. scientific names) and also capture hierarchical and equivalence relationships
in the domain of discourse. Given the development of semantic standards within a
discipline, one can use the token attribute as a bridge between two schemas and
provide semantic interoperability.

e Linkages: Linkages provide a means for inter-operating within and between
schema. One can define four types of linkages:

1. attribute-to-attribute,

2. cluster-to-attribute,

3. cluster-to-cluster, and

4. cluster-to-token.
Each of the linkages can be from one-to-many, many-to-one, or many-to-many.
The linkage information is used to generate joins dynamically based on the user’s
chosen set of attributes. The join algorithm uses Steiner Tree generation of SQL
commands from a directed acyclic graph; the DAG is a mapping of clusters and
the linkages between them. The linkage information is used to perform federated
query operations across schemas. The DAG is also used to figure out the notion of
an allowed query by disallowing queries that span disjointed graphs.

MCAT provides APIs for creating, modifying and deleting the above structures. The
architecture of the MCAT is given in Figure 3-2. MCAT provides an interface protocol
for applications such as Web servers. The protocol uses a data structure for the
information interchange which is called MAPS—Meta-data Attribute Presentation
Structure. The data structure, which also has a wire-format for communication and a data
format for computation, provides an extensible model for communicating meta-data
information. A mapping is being developed to translate from the MAPS structure to the
Z39.50 format [18]. Internal to MCAT, the schema for storing meta-data (may possibly)
differ from MAPS, and hence mappings between the internal format and MAPS are
needed for every type of implementation of the MCAT. Note that it is possible to store
the meta-data in databases, flat files, or LDAP directories [19]. MAPS provides a uniform
structure for communicating between MCAT servers and user applications.

The MAPS structure defines a query format, an update format and an answer format. The
MAPS query format is used by MCAT in generating joins across attributes based on the
schema, cluster and linkages discussed above. Depending upon the internal catalog type
(e.g., DB2 database, Oracle database, or LDAP) a lower-level target query is generated.
Moreover, if the query spans several database resources, a distributed query plan is
generated.

17

MAPY
Inftialization

3 Schema
¥ Initiafization

Figure 3-2. MCAT architecture.

The MCAT system supports the publication of schemata associated with data collections,
schema extension through the addition or deletion of new attributes, and the dynamic
generation of the SQL that corresponds to joins across combinations of attributes. GUIs
have been created that allow a user to specify a query by selecting the desired attributes.
The MCAT system then dynamically constructs the SQL needed to process the query. By
adding routines to access the schema-level meta-data from an archive, it is possible to
build a collection-based persistent archive. As technology evolves and the software
infrastructure is replaced, the MCAT system can support the migration of the collection
to the new technology. Effectively, the collection is completely represented by the set of
digital objects stored within the archive, the schema that contains the digital object meta-
data, and the schema-level meta-data that allows the collection to be instantiated from
scratch. ’

3.2 Persistent Archive Assessment

The assessment of a particular implementation of a persistent archive is based upon
tradeoffs between cost, performance, and risk. Cost is driven by the performance
requirements and the acceptable degree of risk. Risk is mitigated by increasing the level
of hardware resources that must be dedicated to achieve the desired performance.
Archival storage systems typically operate with minimal risk, as long as there are
sufficient resources to meet the demand for disk space, CPU cycles, or network
bandwidth. When any of these resources becomes scarce, the system will stop
functioning. An assessment can be quantified by specifying the minimal levels of
resources needed for a given load. In reference [12], this assessment has been done for

18

the HPSS archival storage system. A scaling study has been done to define how the
critical resources must be increased in size as the total number of files and the access
transaction rate increases. The controlling parameter is the size of the container used to
aggregate data for storage into the archive. This impacts the transaction rate, the
utilization efficiency for the tape drives, and the effective bandwidth that the system is
able to sustain. Table 3-1 gives the amount of directory disk space, the CPU capacity,
and the storage needed to log transactions, as a function of the demands on the system.
Similar assessments can be done for the database that is used to manage the collection,
and are also listed in Table 3-1. The database scaling factors are based upon industry
standards [4].

Function Resource Scaling
HPSS
Logging space Disk 100 MB per 1000 file transactions
Directory space Disk 2.5 GB per million containers
Data movement # Nodes 3 * (I/O rate)/(node I/O rate)
Data movement # Tapes 7 * (I/0 rate)/(tape /O rate)
Data cache Disk 3 * (daily stored data)
Database
Directory size Disk 3 * (meta-data sizeper object) * (# objects)
Request processing # Nodes (Directory size) / (30 GB per node)

Table 3-1. Scaling parameters for archive and database size

The scaling study must be augmented with an analysis of theuser load to properly tune
the archival storage system. An example analysis for the SDSC user workload is
published in reference [20]. The archival storage resources (disk space and tape space)
are assigned to service classes that are matched to the load requirements. This guarantees
that performance requirements can be met by the archive.

3.2.1 Usage Models

The scaling parameters listed in Table 3-1 assume that the transaction rate for the archive
remains below the maximum sustainable transaction rate for the system. For the SDSC
storage system, a conservative estimate for the maximum file operation rate is about
100,000 file operations per day. For the E-mail collection described in section 5, the
average message size is 2.5 kB. For a 100-MB sized container, it is possible to store
40,000 messages per container. The maximum rate that messages can be loaded into the
archive through use of containers is then over 4 billion messages per day.

The controlling parameter then becomes the sustainable I/O rate. The required I/O rate is
aggregated across multiple peripherals. For accesses to disk, the internal I/O rate can be
a factor of three higher than the external data movement into the archive, counting data
migration to tape and caching from tape. For access to tape, the duty cycle of the tape
drive must be included, as part of the time a tape drive will be idle while a new tape is

19

loaded and positioned. For 100 MB containers, the duty factor can be as high as 7,
if storage of each container requires that a new tape be mounted. The data cache needed
for an archive to manage the data movement onto tape is scaled in size to allow three
days of data to accumulate. This means the data for the previous day can be processed
while the next set of data is being ingested, and other data collections are being queried.
The scaling metrics can be evaluated to show that the resources needed for a single data
collection are small compared to the archive at the San Diego Supercomputer Center.
However, when the number of collections becomes sufficiently large, on the order of 100,
the persistent archive requirements approach that of a supercomputer center. We
demonstrate this by evaluating the resource requirements for three different types of
collections (E-mail, text, and images).

We consider a usage scenario in which data is ingested onto disk, mined for meta-data,
aggregated into containers, and stored into the archive. The meta-data is loaded in
parallel into a database table for supporting future queries against the collection. For
each of the collections, we assume the data is ingested on a daily basis, and calculate the
number of CPUs, amount of disk, and number of tape drives that are needed to manage a
data collection that has been aggregated over a year. . Note that the database is read from
the archive before each daily update, and then written back to the archive. The node disk
/O rate is assumed to be 30 MB/sec, and the tape I/O rate is assumed to be 10 MB/sec.
The entire database of meta-data is read and written each day from the archive. The
digital objects are written daily into the archive but not re-read. The archive disk is made
large enough to support both the data ingestion, and the reading of the database.

An E-mail collection that aggregates 36 million messages per year is shown in Table 3-2.

Load Rate Size
100,000 messages per day] 2.5 kB per message
250 MB of data per day
10 MB of meta-data per day 100 B of meta-data per message
3 containers stored per day 40,000 messages per container

36 million messages stored per year

91 GB of data stored per year

3.6 GB of meta-data stored per year

900 containers stored per year 100 MB per container

Table 3-2. E-mail collection of 36 million messages per year

The corresponding resource requirements are:
e Archive — 1 node, 12 GB disk, 1 tape drive
e Database — 1 node, 11 GB disk

Load Rate Size
100,000 files per day 30 kB per file
3 GB of data per day
100 MB of meta-data per day 1 kB of meta-data per file

20

33 containers per day 3300 files per container

36 million files per year

1.2 TB of data per year

36 GB of meta-data per year

12,000 containers per year 100 MB per container

Table 3-3. Text collection of 100,000 files per day

Note that current database technology manages up to three billion records on parallel
computers.

The same analysis is shown for a text collection in Table 3-3. The corresponding
resource requirements are:

e Archive — 1 node, 130 GB disk, 2 tape drives

e Database — 4 nodes, 120 GB disk

Load Rate Size
10,000 images per day 2 MB per image
20 GB of data per day
20 MB of meta-data per day 2 kB of meta-data per image
200 containers per day 50 images per container

3.6 million images per year

7.3 TB of data per year

7.3 GB of meta-data per year

73,000 containers per year 100 MB per container

Table 3-4. Image collection of 10,000 images per day

The analysis for an image data collection is shown in Table 3-4. The corresponding
resource requirements are:

e Archive — 1 node, 82 GB disk, 1 tape drive

e Database — 1 node, 22 GB disk

While these resource requirements are all more than a factor of 10 smaller than the
supercomputer center archive, the requirements become substantial if 100 collections
must be managed, each of which is ingesting data on a daily basis. Note that in this usage
scenario, each database is read from the archive, meta-data is added to the database and
the database is re-written into the archive on a daily basis. One could support the
collections by adding resources proportionally to sustain the aggregate I/O rate. This is
possible because the total number of files that the archive must manage is governed by
the container size, and is only 1 million for a total storage of 100 TB. At this rate the
archive could store data for 40 years before the maximum number of containers that can
be managed by the archive is exceeded. The archive is scaled in size to handle the
increased load by adding CPU, disk and tape resources.

There are several approaches for decreasing the total amount of hardware resources that
would be needed. In practice, for ingestion of continuous streams of data, the amount of

21

data that is stored within one collection can be decreased by aggregating data for a
shorter period of time, on a bi-annual or monthly basis. This implies that the amount of
data that is read on a daily basis to modify the database for each collection can be
decreased by a factor of ten if each database contain a month’s worth of data. Queries for
access would then use a finding aid to locate the correct database for information
retrieval.

The usage scenario for data ingestion can also be modified to decrease the amount of I/O
by using database technology that maintains unused partitions of its index space in the
archive. This is an area of research that could be pursued for integrated database/archival
storage systems. Each database would keep a subset of the meta-data continuously on
disk, and page meta-data to the archive as meta-data containers fill up.

The capital cost of a persistent archive is proportional to the amount of hardware
resources that are required. Table 3-5 gives the requirements for a system that could
sustain 100 GB of data ingestion per day, hold 3 years of data (109 TB), manage 1.1
million containers, and manage yearly aggregation of 3.3 million digital objects for each
of 100 collections.

Load Rate Size

900,000 digital objects per day 110 kB per digital object

100 GB of data per day

900 MB of meta-data per day 1 kB of meta-data per digital object

1000 containers per day 900 digital objects per container

328 million digital objects per year

36 TB of data per year

328 GB of meta-data per year

365,000 containers per year 100 MB per container

Table 3-5. Large scale persistent archive

The archive nodes are assumed to have 4 processors per node, while the database nodes
have 1 processor per node. Note that the collections are cycled in turn through the
database nodes for update on a daily basis. Thus while the total amount of database
directories that are read each day is 1 TB, only 10 GB of meta-data is manipulated at any
one time within a database. While one database is being manipulated, the next one is
being read and the prior database is being written back to the archive.

Table 3-6 gives the associated resources and approximate cost for the persistent archive

- that should be capable of sustaining the aggregate data load.

Resource Number of units Cost per unit
Archive tape robot 1 $300,000
Archive tape drives 16 drives $30,000
Tape media (20 GB) 5400 cartridges $50

Archive disk 320 GB $300k per TB
Database disk 30 GB $300k per TB

22

Parallel computer nodes 4 nodes $75k

Database nodes 2 nodes $25k

Parallel computer switch 1 $100k

Archive storage system 1 $150k per year
Database system 1 $100k per year

Table 3-6. Persistent archive for 1 billion digital objects

The total cost is $2.3 million. The largest single cost component is the tape drives for
moving a total of 2 TB per day. If a larger container size is used, the duty cycle on the
tape drives can be decreased, and the number of drives decreased proportionally. For a
container size of 500 MB, the tape duty factor is about 3, the number of required drives is
7, and the system cost drops to $2 million. If containers are written sequentially to the
same tape media, the drive duty factor can be reduced to less than a factor of 2, dropping
the required number of tape drives to 4 and the cost to $1.9 million. The system is
scalable, with a system twice the size costing $3.75 million. The parallel computer
switch and software licenses costs do not change. A system one quarter the size costs
$1.57 million.

An associated analysis is needed to quantify the number of nodes used to manage the data
ingestion. For the E-mail collection described in section 5.2, the original data was
provided in aggregated form to minimize the number of files that were ingested. The rate
at which the meta-data was mined from the messages was about 70,000 messages per
hour. On the order of 250,000 messages were loaded into the database per hour. If
similar rates are sustained for the large scale persistent archive, accessioning 900,000
objects per day will take about 17 CPU hours, implying the need for a separate data
ingestion node for the archive.

It is worth noting that CPU performance, disk and tape capacities, and disk and tape I/O
rates will continue to improve. The expectation is that by year 2005, it will be possible to
store a terabyte of data on a tape, and read the tape at 100 MB/sec. The types of storage
media also may change dramatically, with disk platters replacing tapes, and eventually
holographic storage replacing disk platters. The latter two advances will decrease the
large latency associated with tapes, and make it possible to use as few as one quarter as
many peripherals.

The metrics that have been discussed for a scalable persistent archive include cost,
capacity, automation through use of tape robots, risk mitigation through use of backup
procedures and multiple copies of critical data, and heterogeneity through use of separate
systems for database and archival storage support. The corresponding tradeoffs are:

o Cost versus scalability. By eliminating the parallel computer switch, it is possible to

build a cheaper system, but one which will be harder to expand as the total amount of
data increases.

3
i

23

e Cost versus complexity. One can design a system in which data is migrated
between two types of tape, with digital objects stored on very high capacity but
higher latency tape, and the database meta-data stored on lower capacity but lower
latency tape. The system is more complex, provides a cheaper solution as the size of
the system is increased, but is not as cost effective for small systems.

o Cost versus risk mitigation. To safeguard data, two copies should be maintained on
the cheapest archival storage media. This increases the cost of the system. The
second copy can be migrated out of the tape robot and maintained on shelf, but the
media costs are still incurred. ' ‘

e Access versus preservation. The systems shown focus on the storage and update of
data collections, and do not explicitly address data retrieval requirements. One
approach for minimizing risk is to minimize the number of times a tape is handled.
This is possible if frequently referenced data sets are maintained on disk. This
increases the amount of disk space that is required.

o Infrastructure independence versus proprietary format. The update scenario
assumes that an infrastructure dependent representation of the database tables is used.
This should be augmented with the storage of an infrastructure independent
representation of each collection on a periodic basis.

e Automation versus operation cost. The scenarios rely on the use of tape robots to
minimize operational labor costs. Labor costs will increase if a second tape copy is
maintained on shelf outside the robot, but will be partially balanced by decreasing the
need for an additional tape robot. Note that the major labor cost will be incurred if
robots are not used when the data is migrated to new media, requiring that all tapes be
accessed by hand and read.

e Automation versus risk mitigation. Use of a tape robot provides a higher degree of
assurance that tapes will not be dropped or damaged. However, note that even tape
robots damage tapes occasionally. The experience at SDSC is roughly one damaged
tape per 150,000 tape mounts.

3.2.2 Operational Systems

The principal components of a persistent archive are the archival storage system and the
database management system. Both technologies are readily available from commercial
vendors. However, no commercial products exist at the present time that provide a fully
integrated system. Sites that require a persistent archive must decide how the integration
can be best done for their usage requirements, and either implement the solution locally,
outsource to a systems integrator, or find a vendor that provides a persistent archive
service. All approaches incur some level of risk. Maintaining expertise sufficient to do
the systems integration within an organization requires continual training of new
personnel, and retention of the expertise while under competitive pressure from
commercial institutions that need the same technology. Outsourcing assumes that the
systems integrator will be available for the lifetime of the persistent archive. Relying on a
commercial service requires assurance that the required level of persistence can be
provided. When integrated database/archival storage systems are available
commercially, it will become possible to run a persistent archive as an application, with a
corresponding decrease in the level of expertise that is required.

24

Large scale archival storage systems and database systems are sufficiently complex that
multiple staff are required both to maintain the systems and to migrate the systems to new
technology. Large-scale production archives require support for the parallel computer
operating system, support for the archival storage software, and testing support for new
technology as it becomes available. Database systems require similar support for the
parallel operating system and database administrators to manage the database software.
For the persistent archive shown in Tables 3-5 and 3-6, the number of required staff is on
the order of 10 full time systems analysts, plus two operators to monitor the system. Note
that the archive at the San Diego Supercomputer Center is maintained by a staff of 5
system analysts. The operating labor costs can easily exceed the amortized hardware
and software costs, assuming the technology is upgraded on a three to four year cycle.

The persistent archive scenarios have concentrated on the long-term storage of data
collections. An equally important step is the ingestion process, for the creation of the
collections. For the scale that is being discussed, the automation of the ingestion process
becomes as important as the ability to migrate the data collections once they are archived.
It is only feasible to consider collections of a billion objects if the attributes needed to
identify each digital object can be generated by automated analysis of the input data
stream. In sections 5 through 13, the ingestion process is described for each of the test
collections, along with lessons learned on the ability to automate the process.

25

4. Collection support, general requirements

The process used to ingest a collection, transform it into an infrastructure independent
form, and recreate the collection on new technology is shown schematically in Figure 4-1

ARCHIVING A

EXTRACT METADATA STORE DATA-AND. *

(SGML/XML) METADATA. IN ARCHIVES
DATA

COLLECTION

RETRIEVAL

INTE?#.EEE GENERATE - RETRIEVE.

QUERY-INTERFACE METADATA

QUERY - METADATA-AND. GENERATE-DATABASE
RETRIEVE. DATA FROM ARCHIVE S i

Figure 4-1. Persistent Collection Process

Two phases are emphasized, the archiving of the collection, and the retrieval or
instantiation of the collection onto new technology. The diagram shows the multiple
steps that are necessary to preserve digital objects through time. The steps form a cycle
that can be used for migrating data collections onto new infrastructure as technology
evolves. The technology changes can occur at the system-level where archive, file,
compute and database software evolves, or at the information model level where formats,
programming languages and practices change.

4.1 Collection Process Definition

The initial data set ingestion and collection creation can be seen as a process in which
(a) objects are captured, wrapped as XML digital objects, and categorized in a
(relational) database system,

(b) the collection is ingested into an archival-storage system using containers to
hold the digital objects along with all pertinent meta-data and software modules.

The migration cycle can be seen as the reverse of the ingestion process in which
(a) containers are brought out of deep-store and loaded into a (possibly NEW)
database system (that can be relational or hierarchical or object oriented)
(b) the database is queried to form (possibly NEW) containers that are placed
back into a (possibly NEW) archival storage system.

27

Note the similarities in steps (a) and (b) of the ingestion and migration processes. To
facilitate migration one needs to make certain that the data formats and programs are also
migrated forward. The key issue in the preservation process is that one needs to preserve
the data collection in a manner that it can be recreated in a new form as and when
required. Storage of objects in proprietary formats and/or machine/software-dependent
formats will create problems in the future when the system and/or programs used to
materialize these formats become obsolete.

In order to build a persistent collection, we consider a solution that "abstracts" all aspects
of the data and its preservation. In this approach, data object and processes are codified
by raising them above the machine/software dependent forms to an abstract format that
can be used to recreate the object and the processes in any new desirable forms.

Data objects are abstracted by marking the contents of each digital object with tags that
define the digital object structure. Tags are also used to mark the attributes that are used
to organize the collection and define the collection context. An extensible mark-up
language such as SGML or XML is used. XML (and SGML) has the advantage that the
structure associated with the digital object can be defined through use of a Document
Type Definition that can be applied across all objects within a collection. Processes are
abstracted such that one can create a new "procedure” in a language of choice. Examples
are the ingestion procedures themselves. They comprise abstract load modules’ for
building the collection. Similarly, the querying procedures can be represented as ’abstract
mappings from a definition language to a query language’ and visualization presentation
procedures can be cast as ’style-sheet abstractions’.

The multiple migration steps can be broadly classified into a definition phase and a
loading phase. The definition phase is infrastructure independent whereas the loading
phase is geared towards materializing the processes needed for migrating the objects onto
new technology.

We illustrate these steps by providing a detailed description of the actual process used to
ingest and load a million-record data collection at SDSC. Note that the SDSC processes
were written to use the available object-relational databases for organizing the meta-data.
In the future, it may be possible to go directly to XML-based databases.

I. Ingestion/Creation Definition Phase

The SDSC infrastructure uses object-relational databases to organize information. This
made data ingestion more complex by requiring the mapping of the DTD hierarchical
representation onto a relational schema. Two aspects of the abstraction of objects need to
be captured: relationships that exist in and among the data, and hierarchical structures
that exist in the data. These were captured in two different types of abstractions: through
a relational Data Definition Language (DDL), and through a hierarchical Document Type
Definition (DTD). The relational abstraction facilitates querying about the meta-data,
whereas the hierarchical abstraction facilitates presentation, storage and transportation.
Hence, our process captured both of these aspects of digital objects. In the future, both

28

aspects might merge due to emergence of XML-based database systems. In the
model below, only the XML-DTD is stored as part of the abstract object; instead of
storing the DDL, we store the procedure for creating a DDL from a DTD. A system-
dependent DDL was created using the DTD and the DTD-to-DDL mapping procedure
with the addition of system-specific information. The software that creates the system-
dependent DDL comprises the instantiation program between the digital objects stored in
the archive, and the collection that is being assembled on new technology.

Define Digital Object
e define meta-data
¢ define object structure (OBJ-DTD) ---(A)
e define OBJ-DTD to object DDL mapping ---(B)

Define Collection
o define meta-data
e define collection structure (COLL-DTD) --(O)

e define COLL-DTD to collection DDL mapping --- (D)
Define Containers

e define packing format for encapsulating data and meta-data (examples are the
AIP standard, Hierarchical Data Format, Document Type Definition)

I1. Load Phase:
Create generator for the Database-DDL ---(E)
e [(A),(B),(C),[D),Target-system Info] ==> COLL-DDL - (X)
Create generator for the database Loader --(F
o [(A),(O),(X),Target-system Info] ==> DB Load-module ---(Y)
Create generators for presentation interface and storage - (G)
¢ [(A),(C),(X),Target-system Info] ==> SQL & Style-Sheet -~ (Z)
e [(A),(C),(X),Target-system Info] ==> Archive Load-module --(2)

Generate Containers and Store
e Store also (A),(B),(C),(D),(E),(F),(G) as part of packed format.

In the ingestion phase, the relational and hierarchical organization of the meta-data is
defined. No database is actually created, only the mapping between the relational
organization and the object DTD. Note that the collection relational organization does
not have to encompass all of the attributes that are associated with a digital object.
Separate information models are used to describe the objects and the collections. It is

“possible to take the same set of digital objects and form a new collection with a new

relational organization.

In the load phase, the mappings between the relational and hierarchical representations of
the objects and collections are combined with the hierarchical information model to
generate the relational representation for the new database on the target system. The
information is encapsulated as a software script that can be used to create the new
database tables for organizing the attributes.

29

A second script is created that is used to parse the digital objects that are retrieved
from the archive, and load the associated meta-data into the new database tables.

Steps (A),(B),(C) and (D) can be interpreted as abstract mark-up formats for digital
objects and steps (E),(F) and (G) can be interpreted as abstract procedures. The formats
and procedures can be combined to support migration of the collection onto new software
and hardware systems, as well as migration onto new information models or data formats
and new procedure languages.

In a system-level migration process, a database is created using (X), the database is
instantiated from the copy of the container(s) in the archival storage system using (Y),
and the data in the database is stored into a new archival storage system using (Z’).

In a format-level migration process', new versions of (A),(B),(C),(D) are created based on
the prior values, a database is created using the original (X) and instantiated with the
prior (Y), and then the data in the database is reformatted and stored in the archival
storage system using the new (Z)).

In a language-level migration process, new versions of (E),(F),(G) are created based on
the original values, and stored as part of the packaged container. The data itself is not
migrated.

4.2 Summary Information across all Collections

Table 4-1 indicates where each of the 9 collections are further documented in this report.
It also matches each collection with one of the original Research and Development Plan
and Schedule (RDPS) tasks, identifies the collection source, and specifies whether the
collection was ingested into archival storage at SDSC and a demo developed.

Alias Report RDP Collection Source Ingestion | Demos

S
E-mail Section 5 L. A. | E-Mail Postings SDSC Y Y
Appendix
A
Tiger92 Section 6 I. C. | Tiger/Line92 - Census Y
Appendix
B
104" Section7 | L C. | 104" Congress Bills House Y
Appendix
C
VAD97 Section 8 I.C. | 105" Congress Roll House Y
Appendix Call Votes
D
EAP Section 9 1. C. | Electronic Archive NARA Y
Appendix Project
E
Vietnam | Section 10 | I.C. | Combat Area NARA Y Y
Appendix F Casualties Current File
-- CACCF :
Patent Section 11 | L D. | Patent Data USPTO DOCT DOCT
Appendix Demo

30

G
AMICO | Section12 | I C. | Image Collection CDL Y Y
Appendix (AMICO) California
H Digital Library
JTIC Section 13 | I C. | Joint Interoperability Defense Y Y
Appendix I Test Command

Table 4-1. Persistent Archive Demonstration Collections

For each of the demos developed, Table 4-2 further describes the type of features
highlighted:

Preservation deals with archival storage of the original collection. The labels
are listed in bold for copying into HPSS -- HPSS, copying into HPSS through
a database tablespace -- UDB, copying an XML-tagged version and associated
DTD -- XML, and copying related relational database information -- SQL.
Access specifies what technologies are used to query the archived collection.
The labels are listed in bold for use of relational technology -- SQL, or XML-
based technology -- XMAS. '
Presentation describes whether HTML stylesheets are used -- HTML or
XML stylesheets are used -- XSL, or an SQL interface.

Consistency gives an indication of the kind of quality assurance that was
performed.

Alias Demos .
Preservation Access Presentation Consistency
E-mail HPSS /SQL/ SQL HTML stylesheet | Checking for duplicate
XML messages
Vietnam | HPSS/SQL/ SQL/ SQL command Incomplete Info Checks
XML XMAS | line presentation Through SQL queries
AMICO HPSS /SQL/ SQL/ XSL stylesheet
XML XMAS | HTML stylesheet
JTIC UDB/ SQL SQL SQL command
line presentation

Table 4-2. Persistent Collection Demonstrations

Table 4-3 lists the raw size of each collection (by raw, we mean the size of the collection
as assembled or delivered to us on CD-ROM, tape, or other), the number of records in the
collection, the time to store the collection on the archive (we also indicate when
additional time was spent TAR-ing the collection first), and the type of container
technology used for storage purposes (digital objects are stored as files, as records in
containers, as database objects through use of UDB tablespaces, or as data handling
objects within containers-- as done in the SRB technology).

Raw Size | # Records Archival Time Container Type

E-mail

2.52GB| 1,000,000 1h02m Record / SRB

31

Tiger92 24.47 GB 50,951 Tar: 19h28 m Record
18h 20m
104" 0.32 GB 11,437 Tar: Oh 14m file
Oh 15m
VAD97 0.03 GB 1,288 Tar: Oh 03m file
0Oh 2m 25s
EAP 0.84 GB 11,543 Tar: Oh42m database
Oh 37m 13s
Vietnam 0.07 GB 58,181 Tar: Oh 03m database
0Oh 2m 39s
Patent 150.00 GB 2,000,000 Will be done in database
Aug.
AMICO 0.12 GB 51 Tar: Oh 08m SRB
Oh 8m 06s
JITIC 0.38 GB 630 Tar: Oh 16m database
Oh 21m 29s

Table 4-3. Collection attributes

Finally, Table 4-4 characterizes each collection according to its suitability for XML and
Relational representation, and captures in a few words the defining nature of the
collection (E-mail illustrates scalability and access, while AMICQ illustrates images and
complex meta-data, while Tiger92 illustrates a topological spatial format suitable to long-
term preservation but not conducive to interaction -- typically GIS vendors convert
TIGER/Line92 into a native interaction format.). ‘

In Table 4-4, we distinguish meta-data and collection to characterize the suitability for
relational representation..

E-mail tags are suitable for a relational representation, however, the body of
the E-mail message is not (Blob, attachment, unstructured text).

EAP has relational meta-data but the digital object is an image.

Patent is similar to EAP

AMICQO is similar to Patent

JTIC does not seem particularly suited for any kind of relational
representation.

Suitability for Suitability for Main Feature
XML Relational
Representation Representation
Meta-data | Object
E-mail Y Y N Scalability & access
Tiger92 Y Y Y spatial data
storage vs. interaction

104" Y Y Y Formatted text
VADY97 Y Y Y Fixed-record + HTML

32

EAP Y Y N Images & proprietary
DB format
Vietnam Y Y Y Fixed-record structure
Patent Y Y N Compound documents
AMICO Y Y N Images & complex
meta-data
JTIC N Y N Heterogeneous /
binary data

Table 4-4. Information Models

Clearly, as shown in Table 4-4, no single representation is good for everything, whether

meta-data-base, relational, or XML-based.

33

34

5. Collection support — E-mail postings

COLLECTION DESCRIPTION:

A collection of 1 million records has been assembled. E-mail messages and Newsgroup
(Usenet) messages were possible candidates. We settled on assembling the corpus from
Usenet groups, collected at SDSC. The corpus of interest focuses on technical topics,
including Computer Science, Science, Humanities, and Social Science. RFC 1036
provides a standard for Usenet messages that defines both required and optional
attributes.

OBJECTIVES:

Demonstrate preservation strategy and sustained access to a 1 million record collection
and look at the potential for upward scalability.

RELATED COLLECTIONS:

The main difference between Newsgroup records and E-mail records is that we are not
concerned with attachments. To deal with attachments, lessons learned for the JTIC
collection are relevant.

APPROACH TAKEN:

We created XML images of the 1 million records according to a well-defined E-mail
DTD. A relational representation of the collection was also developed. The complete
ingestion, archival storage, collection creation, and query access cycle was demonstrated.
Sample SQL queries were shown against the resulting dynamically recreated collection.

IMPORTANT FINDINGS:

The1-million record E-mail collection was ingested, archived, and dynamically rebuilt
within a single day. This was possible because all steps of the process were automated.
The demonstration is scalable, such that archiving of 40-million E-mail records can be
done within a month. The steps for the 1-million record demonstration included
assembling the collection, tagging each message using XML, archival storage of the
digital objects, instantiation as a new collection, indexing the collection, presentation
through a Web interface, and support for queries against the collection. The required
Usenet meta-data attributes form a core set that can be applied to all E-mail messages.

35

5.1 "Long-Term Preservation'' Information Model

A typical example of a raw E-mail record is given in Figure 5-1. Note that unique tags
are added to define the beginning and end of the record. This is required because it is
possible for an E-mail message to contain an encapsulated E-mail message, making it
difficult to create digital objects by explicit analysis of the complete collection.

___ NARA_article_begin

Path: news.sdsc.edu!newshub.csu.net!newshub.sdsu.edu!newsfeed.berkeley.edu!
news.cis.ohiostate.edu Inews.rootsweb.com!rootsweb-gw

From: Casivers@aol.com

Newsgroups: soc.genealogy.hispanic

Subject: Passenger Lists for Ships from Spain To Cuba

Date: 22 Mar 1999 16:20:37 -0800

Organization: RootsWeb Genealogical Data Cooperative

Lines: 7

Message-ID: <2376321.36f6de03@aol.com

NNTP-Posting-Host: localhost

Mime-Version: 1.0

Content-Type: text/plain; charset=US-ASCII

Content-Transfer-Encoding: 7bit

X-Trace: bl-1.rootsweb.com 922148437 3147 127.0.0.1 (23 Mar 1999 00:20:37 GMT)

X-Complaints-To: usenet @news.rootsweb.com

NNTP-Posting-Date: 23 Mar 1999 00:20:37 GMT

Xref: news.sdsc.edu soc.genealogy.hispanic:3156

Does anyone know where I can get passengers lists for
ships that transported Spaniards to Cuba circa 1860°s?
Any help would be appreciated.

Thanks,

Cheryl Sanchez-Sivers
__ NARA_article_end

Figure 5-1. Example of raw E-mail message
Object-Level Structure: XML DTD.

A DTD was derived which reflects the RFC1036 structure described in Appendix A.
Please note that each of the required, optional, and other keyword items is associated
with a segno attribute. This attribute is used to record information on the sequence in
which the various keywords appear in the original document, since the order of
appearance of keywords may be different in different documents. The DTD for the E-

mail messages is given in Figure 5-2.

<!ELEMENT rfc1036_mesg (headers, body)>

<!ELEMENT headers (required_headers, optional_headers, other_headers)>

36

<!ELEMENT body #PCDATA>

<!ELEMENT required_headers (From, Date, Newsgroups, Subject, Message-ID, Path)>

<!ELEMENT optional_headers (Folloup-To?, Expires?, Reply-To?, Sender?, References?,
Control?, Distribution?, Keywords?, Summary?, Approved?,
Lines?, Xref?, Organization?)>

<!ELEMENT other_headers other+>

<!-- 6 required header keywords -->

<IELEMENT From #PCDATA>
<!ELEMENT Date #PCDATA>
<!ELEMENT Newsgroups #PCDATA>
<!ELEMENT Subject #PCDATA>
<IELEMENT Message-ID #PCDATA>
<!ELEMENT Path #PCDATA>
<IATTLIST From seqno CDATA #REQUIRED>
<!ATTLIST Date seqno CDATA #REQUIRED>

<!ATTLIST Newsgroups seqno CDATA #REQUIRED>
<IATTLIST Subject seqno CDATA #REQUIRED>
<!ATTLIST Message-ID seqno CDATA #REQUIRED>

<!ATTLIST Path seqno CDATA #REQUIRED>

<!-- 13 optional header keywords -->

<!ELEMENT Followup-To #PCDATA>

<!ELEMENT Expires #PCDATA>

<!ELEMENT Reply-To #PCDATA>

<!ELEMENT Sender #PCDATA>

<!ELEMENT References #PCDATA>

<!ELEMENT Control #PCDATA>

<!ELEMENT Distribution #PCDATA>

<!ELEMENT Keywords #PCDATA>

<!ELEMENT Summary #PCDATA>

<!ELEMENT Approved #PCDATA>

<!ELEMENT Lines #PCDATA>

<!ELEMENT Xref #PCDATA>

<!ELEMENT Organization #PCDATA>

<IATTLIST Followup-To seqno CDATA #REQUIRED>
<!ATTLIST Expires seqno CDATA #REQUIRED>
<IATTLIST Reply-To seqno CDATA #REQUIRED>
<!ATTLIST Sender seqno CDATA #REQUIRED>
<!ATTLIST References seqno CDATA #REQUIRED>
<!ATTLIST Control seqno CDATA #REQUIRED>
<IATTLIST Distribution seqno CDATA #REQUIRED>
<IATTLIST Keywords seqno CDATA #REQUIRED>
<!ATTLIST Summary seqno CDATA #REQUIRED>
<IATTLIST Approved seqno CDATA #REQUIRED>
<!ATTLIST Lines seqno CDATA #REQUIRED>
<!ATTLIST Xref seqno CDATA #REQUIRED>
<!ATTLIST Organization seqno CDATA #REQUIRED>

<!-- other header keywords -->
<!ELEMENT other #PCDATA>

<!ATTLIST other

37

keyword CDATA #REQUIRED
seqno CDATA #REQUIRED>

Figure 5-2. DTD for E-mail message.

The Newsgroup message shown previously in Figure 5-1 can be displayed using Microsoft
Notepad, an XML viewer, by applying the DTD shown in Figure 5-2. This provides the ability to
impose a presentation style on the objects in a collection. The result is shown in Figure 5-3.

Object-Level Structure: Relational Schema.

Loading sources with regular structure into a relational database (RDB) has several
benefits:

— Inconsistencies in the data can be automatically detected using the RDB’s built-in
consistency checks (data types, uniqueness of keys, referential integrity, etc.)

— Powerful ad-hoc SQL queries can be used to further clean the data from
inconsistencies ‘

— Interesting information from the collection can be mined

— Different versions of the collection can be compared

— Using an RDB-to-XML wrapper provides an XML view on the collection.

This same approach is used for the CACCF (Vietnam War Casualties collection). In the
case of the Newsgroup records, however, the underlying Relational Database structure is
much more complex as not all attributes are required. The semi-structured nature of the

E-mail messages is more easily represented with an XML hierarchical representation.

38

[=-*% RFC1036_MESG
i

£-E3 HEADERS

-] REQUIRED_HEADERS

r-E3 DATE
&£ NEWSGROUPS
&-E3 SUBJECT
E-E3 MESSAGE-D
SR

i@ SEQNO
-0 DPTIONAL_HEADERS
&3 LINES
-3 XREF
£ ORGANIZATION
i@ SEQNO
=-E3 OTHER_HEADERS

E-E3 OTHER
i b-® KEYWORD

-® SEQNO
OTHER
3 OTHER
H-E1 OTHER
-3 OTHER

-3 OTHER

@-£3 OTHER
-y, BODY

et

Casivers@aol.com

2

27 Mar 1955 16-20-37 0800 ?
soc.genealogy. hispanic

Passenger Lists for Ships from Spain To Cuba

2376321 36iBdel3@aol.comd

i
news. sdsc.edulnewshub. csu.netinewshub. sdsu.edulnewsfeed berkeley.e... }
i
i

hews.sdsc.edu soc.genealogy. hispanic: 3156

|
RootswWeb Genealogical Data Cooperative 1
8 i

.
localhost

NNTP-Posting-Host

3

1.0

text/plain; charset=US-ASCI|

7hit

bl-1.rootsweb.com 922148437 3147 127.0.0.1 (23 Mar 1999 00:20:37 GMT]I :

usenet@®news.rootsweb.com

23 Mar 1999 00:20:37 GMT

IDoes anyone know where | can get passengers lists for ships that transpo...

Figure 5-3. Formatted message using XML DTD

We define 3 hand-crafted tables for the Newsgroup collection for the relational database: -
o The first table contains all the required and optional header field information
supported in RFC1036. Additionally there is an internalMsgld used for cross-
references with other tables. sequence numbers are used to show the sequence in
which the fields appeared in the original message.
¢ The second table contains facilities for storing other header fields not supported

by rfc1036.

e The third table contains ‘systemic’ information about how the body of messages
are stored. The dataid field refers to a "file" or "container" id. The
posinContainer field is the offset of the start of that record's body text. The
sizeOfMsg field is the length in bytes of that record's body text.

N

What we ended up doing in practice for storing the collection, was to concatenate
together subsets of the text from the bodies of the Newsgroup messages, not into one

39

huge file over the million record collection, but into smaller files that would hold the
bodies of 40,000 records at a time. Hence we created 25 files or "containers".

In the current implementation of the data handling system, a “container” file can be
registered with SRB/MCAT (the SDSC data handling system). SRB/MCAT provides
access mechanisms for retrieving individual messages from such containers.

For loading the Newsgroup records into a relational database (in this case: Oracle), the
following schema was used:

create table ngrps_headers_core (

internalMsgId integer not null,
FromInfo varchar (200) not null,
MsgDate varchar (50) not null,
Newsgroups varchar(1900) not null,
SubjectInfo varchar(1900) not null,
Messageld varchar (200) not null,
PathInfo varchar (1900) not null,
FollowupTo varchar (1900),
ExpiresOn varchar (50),
ReplyTo varchar (200),
SenderInfo varchar (200),
ReferencesInfo varchar (1900),
ControlInfo varchar (1900},
DistributionInfo varchar (500),
KeywordsInfo varchar (1900),
SummaryInfo varchar(1900),
ApprovedInfo varchax (500),
LinesOfEmail integer,
XrefInfo varchar (500),
OrganizationInfo varchar (500),
FromSegNum integer,
MsgDateSegNum integer,
NewsgroupsSegNum integer,
SubjectSegNum integer,
MessageIdSegNum integer,
PathSegNum integer,
FollowupToSegNum integer,
ExpiresSegNum integer,
ReplyToSegNum integer,
Sender SegNum integer,
ReferencesSegNum integer,
ControlSegNum integer,
DistributionSegNum integer,
KeywordsSegNum integer,
SummarySegNum integer,
ApprovedSegNum integer,
LinesSegNum integer,
XrefSegNum integer,
OrganizationSegNum integer,
primary key {(internalMsgId),
unigue (Messageld,MsgDate)

)i

create table ngrps_headers_othr (
internalMsgId integer not null,
HdrKeyName varchar (50),
HdrKeyValue varchar (2000),
HdrKeySegNum integer,

.40

foreign key (internalMsgld) references ngrps_headers_core
(internalMsgId)
)i

create table container_info (

internalIld integer not null,
data_id integer not null,
posInContainer integer,
sizeOfMsg integer,

foreign key (internalld) references ngrps_headers_core(internalMsgId},
foreign key (data_id) references MDAS_AD_REPL(data_id)

Figure 5.4. Relational Schema for storing E-mail collection

Note that the only fields that are required are the six Usenet required attributes, the
internal message ID that uniquely names each message, and the data ID that defines the
container in which the message is stored.

Collection-Level Structure

The structure at the collection level can be described by the following XML DTD:

<!ELEMENT newsgroup_collection (rfc1036_mesg)*> list of newsgroup messages

Figure 5.5. Collection level definition of the E-mail collections

This is of course a trivial case where we simply create a list of individual Newsgroup
records. Additional "meta-data" or ELEMENT and ATTRIBUTE information could be
stored here if available. Examples would be the source of data for the collection, the
collection ingestion date, and the provider of the collection.

For the database representation of the collection, we define a set of generic meta-data
attributes.

The following screen snapshot shows a subset of collection-level meta-data about the E-

mail collection. Typical attributes are: schema name, subject, comments, constraints,
number of SRB clusters, number of attributes, type of attributes, etc.

41

“{ Create New
‘| Vu-Schema
- Drop
Yu-Schema -
Query & Digplay
Update | Vy'Schema
Fiald
Demos

Add Attribute -
To Yu-Sehéma

Drop Aflribute
Front Vu-Seheria

_ Field Demonstrations for News
Groups
Demnio #1' Postings of Eric
Lancaster
Demo #2: Postings on Tth Januarv
1999
Demo #3: Posnngs on the Classical
» Studies Subject with line
% . count above 1000 but
.- below S000
Demo #4: Postings with Content-
Type header
Demo #5 Non—requn‘ed and non-
optional headers
Collection-level Metadata
Object-level Metadata

Collection Life- Cvcle and Statls'acs

Cnllecuun—level Metadata for NewsGruups

Schema Name
Subject’

Comments

Constféints
Number of -
Clusters

Names of Clus'térs

Numb er of
Attributes
Links in Schema

Resource Name

-Database Name

Database
SchemalV{ame
Owner ‘
Owner Domain

newsgroups
newsgroups metadata

news to news groups

_rfc1036 compham:e expected

3‘-==Zz

core headers
ather headers
container info

47

core headers to other headers

-core headers fo container info

container info'to micat data info
ora-sdsc
hpss "

Us er—deﬁﬁ;d '
Schema

Schemas Involved

Style Sheets

“newsgreiipsdemol .

newsgroups’
Icatcore
Forml

Figure 5.6. Schema level attributes used to define the collection

52 Ingestion process

We have automated the ingestion process from a live feed by developing a harvesting

+ Perl script: harvest.pl. This script when first executed, goes to the location where "live”
E-mail messages are being stored on disk after they are received by SDSC’s Newsgroup
Server (/misc/news/spool on the Server machine in question). The script then recursively
descends through each newsgroup subdirectory (in our case we limited the harvesting to
four subdirectories: comp, humanities, sci, and soc), and retrieves posted messages
(stored as individual files) concatenating them into a large buffer, collection.raw, that

will later be archived to HPSS.

42

An enhancement we made, is that harvest.pl, iterates through this process until it has
collected the 1,000,000 desired records. This was accomplished over a period of 3 1/2
weeks. Because messages typically get purged from the News Server after 3 days, the
harvest.pl is awakened every 2 days (cron job or timeout can be used) and incrementally
adds fresh messages to the running buffer. To accomplish this task, an internal database
is built that logs which newsgroup names it visits and what the current messages-posted
range is, so that it can in later runs only grab the differential or new messages that have
arrived. ’

Note that while harvesting a "raw" aggregate collection file from 1 million individually
harvested E-mail messages, unique delimiters were added to mark the start and end of

records. The earlier E-mail example proposes two such delimiters. Example:
NARA _article_begin
__NARA_article_end

A separate script, raw2xml.pl, converts the delimited E-mail records into XML records
and transforms collection.raw into collection.xml. Note that when creating XML digital
objects, filtering was carried out on "<", "@", and ">" characters (transformed into
"<"@", ">"), , which have special meaning in XML. Also the text body of each
message was encapsulated in one or more series of XML "<![CDATA[" and "]]> header
and footer sequences.

Finally, a third Perl script, xml2sql.pl, is used for dynamic instantiation of the archived
XML collection, for presentation purposes using a relational model approach. Note that
while loading records into the database, it was observed that roughly 17% of all messages
were duplicates, corresponding to cross-listings. We chose to accommodate duplicates as
multiple records in our demo.

Ingestion Statistics (real times @ chagall.sdsc.edu).

The ingestion process was carried out on a workstation (chagall.sdsc.edu). The system
was an SGI Indigo 2 (MIPS R10000 Processor, 195, Memory size: 128 Megabytes).

collection size: 2.52 GB
fHfiles: 1 Million
#records/file: 6 required, 13 optional, variable other

Time to assemble collection:
SDSC Newsgroup --> Collection.raw

12h (1 h 53m to collect 156,000 messages)

Time to convert: 1h 39m
Collection.raw --> Collection.xml

Time to archive: 1h 02m
Collection.raw --> HPSS

Time to archive: 1h 29m

Collection.xml --> HPSS

43

Time to unarchive: * variable -- depends on load &
Collection.xml+DDL --> Disk caching policies on HPSS
Time to convert: 2h 40m
Collection.xml+DDL --> collection.sqlload
Time to load: 4h
Collection.sglload --> DBMS
Time to optimize queries: 4h
Index creation on tables
Time to query: A few seconds for typical queries
SQL query to Web interface
TOTAL LIFECYLE TIME < 27h (Just over a DAY!)

Figure 5.7. Ingestion Times for the E-mail Collection

Assembly and conversion scripts were written in Perl and run on Chagall, a fairly slow
single-processor SGI Indigo2.

The complete lifecycle for: Assembling, Tagging, Archiving, Instantiating, and Querying
of 1 million Newsgroup records, takes roughly 27 hours. The steps for assembling,
tagging, and archiving took only 16 hours.

5.3 Storage requirements

The raw collection collection.raw of 1 million messages is 2.52 GB in size. The tagged
version, 1 million XML records, collection.xml, is 3.45 GB. This represents an expansion
factor of 37%, which can be reduced using appropriate (shorter) tag names.

Because we chose to make 25 message body data files (1 for every 40,000 messages), the
average size of each file was: 64.3 MB. Each of these 25 files is stored as a SRB
container file.

5.4 Data access requirements

The need for faster access and indexing to the database image is necessary when
recreating the data collection. The 3 database tables were indexed with statements such
as: '

create index nhcFrom on ngrps_headers_core (FromInfo) unrecoverable;

Figure 5.8. Indexing commands

44

As expected index creation brought querying times down back to a few seconds (as
opposed to the initial 20 minutes or so). A demonstration of the archive process has been
created. The main presentation demo has built-in queries, such as "Show all Postings on
™7 anuary, 1999) to demonstrate the ability to retrieve arbitrary messages from the
recreated message collection. One can also specify particular attribute values to pull out
a single message. In Figure 5.9, the Web-based user interface is presented which

_ supports attribute based access to the collection.

f MCAT-SRB A Data Integration System - Microsoft Internet Explorer

Amibﬂﬁé Name s

“add Atrbute | . o
Yu-Schema -IT6 Vu-Schéma | mc‘a‘ttnre.data'name‘{
| Query & | Display - ; - e

| = | Update “fvuSshema :

“Fiald =
Demos .- newsgroups.sizeOfMsg

newsgroups.MessagsId

Field Demonsn ations far News
Groups
Demo #1: Posungs of Eric
Lancaster

‘Demo #2: Postmgs on 7th Janug

1999

Demo #3: Postings on the Classzcal

‘ Studies Subject with Line
count above 1000 but
; below 5000

Derno #4: Postings with Content- -
Lype header

Demo #5: Non-required and non-

. ;/optionil headers
Collection-level Metadata
Object-level Metadata :
Collection Life-Cycle and Statistics”

Figure 5.9. Web-based interface for accessing the E-mail collection

In Figure 5.10, the results of the above query are presented. The screen snapshot shows
how results are posted in groups of 10 according to a default HTML style sheet. Notice

45

that when clicking on the mailbox icon, the record’s text body shows up in a separate
blue-tinted window. Also, if one were to click on the (meta-data in XML) link, a separate
XML browser would be invoked, allowing the display of the XML fields for that record.
This last feature is interesting as it shows how one could use database filtering
mechanisms to transform relational data back into tagged XML data on-the-fly.

£ wiatow sy

Figure 5.10. Results of E-mail collection query

5.5 Long term preservation requirements

Even though Newsgroup records do not contain attachments, there are ways to generate
associated binary data that can be archived. For example,

(test-xmtp @jabr.ne. mediaone.net)
is a site to which one can send binary data in MIME format and it will send back an
XML document where binary data is base64 encoded (uuencode). This gives a flavor of
the kinds of encoding schemes one could consider when dealing with attachments.

Our initial goal was to show scalability beyond 40 million records. Based on the ability
to ingest and archive the 1-million record collection in 16 hours, it should be possible to
accession 40 million records in a month, using a single workstation.

46

6. Collection support — TIGER/Line '92 (Census Bureau)

COLLECTION DESCRIPTION:

The TIGER/Line Files are extracts of selected geographic and cartographic information
from the Census Bureau’s TIGER (Topologically Integrated Geographic Encoding and
Referencing) System. They represent geographic features, such as roads, railroads,
rivers, lakes, political boundaries, and census statistical boundaries. for all of the United
States. TIGER/Line 92, while superseded by TIGER/Line 1997 and 1998, is a very
important collection as it provides a link between the 1980 and 1990 Census Geography.

OBJECTIVES:

Demonstrate preservation of spatial data with a collection whose records are suitable for
long-term retention but not necessarily for interactive manipulation. Note that Tiger92
files are not "graphic images of maps". To make use of them, a user must have mapping
or Geographic Information System (GIS) software that can import TIGER/Line data.

RELATED COLLECTIONS:

Because many of the records conform to well-defined fixed-length data dictionaries, this
collection would relate to some aspects of the Vietnam collection.

APPROACH TAKEN:

The core Tiger92 files and associated documentation can be organized using XML. A
corresponding well-defined DTD is sketched. '

IMPORTANT FINDINGS:

A DTD is proposed which may be well suited for describing data collections used with
mapping software. This DTD "links" together XML representations of:

o 4 nation-wide lookup tables (State and City FIPS codes, State abbreviations, Census
Feature Classes, Urbanized Area Codes)

o 58 State-based documents (state + statistically equivalent entity such as the District of
Columbia and Puerto Rico), where each state document contains 2 statewide lookup
tables (Census Entities and School district), and up to 14 county files per county, each
with a well defined format.

6.1 Information model

Analysis of the Tiger92 collection format as detailed in Appendix B, leads us to the
following observations:

Challenges:

e The TIGER/Line92 data is a series of excerpts from an actual database ("LIVE
TIGER"). Thus using this "flattened" version to create an image useful for long-

47

term retention is an added complication. An alternative, if feasible, would be to

work directly with the Census Bureau to capture a snapshot of the Live Tiger
database for archival storage.

e The overall collection data is heterogeneous (delivered across a set of CDs). It
contains:
— Text files
— Word Processor files: WordPerfect, Macintosh formats, Word
— Database files: . DBF
— Graphics files
— Binary executables: LandView software program, a standalone TIGER/Line

viewing program (not used by GIS practitioners though)

— Up to14 record files / county, following the previous data dictionary format
Since each CD-ROM is autonomous, many common files are duplicated

e The underlying topological spatial model used is not the format used for
interaction with the data: typically each GIS vendor implements its own
translators

e The associated documentation contains much of the semantics not available in the
14 county files

e The documentation may have key information in the appendices that is not
available in the data directory portion of the CD-ROMs (e.g. FIPS code table,
standard abbreviations, census feature class codes (CFCC), urbanized area codes
and names).

Potential:

e When focusing on the core elements of the CD-ROM data: county topological
information & documentation & lookup tables, the use of XML appears to be a
viable alternative for a self-documenting long-term retention solution.

e Because of the underlying topological model, each series of county files is self-
contained, in the sense that they can be independently assembled with
neighboring county files.

Proposed Solutions:

Explore the use of DDI (see below) for conversion of the documentation to XML
DTDs

Use XML DTD:s for all topological county files

Use XML DTDs for all lookup/code tables

Create a DTD that will integrate all of these XML-tagged subcomponents: the
implicit relationship between fields as loosely described in the documentation will be
explicitly created for long-term preservation purposes

Explore the use of emerging XML linking standards (XPointer and Xlink --
http://www.w3.org/XML/) for establishing explicit relationships between topological
elements and documentation chunks, as well as "foreign keys" or common attributes
across the 14 county files (relationships that are only described in the documentation).

48

XML Documentation

An emerging XML documentation standard can be used to simplify the ingestion of the
documentation text: DDI (http://www.icpsr.umich.edu/DDI/). The Data Documentation
Initiative (DDI) is a project designed to develop an XML Document Type Definition
(DTD) for data documentation. The DDI standard is meant to be a new meta-data
standard for social science documentation. It can serve as a structured codebook standard
that can be used as an interchange format. DDI is being considered for the
TIGER/Line’92 Technical Manual.

DTD/XML for Tiger92:

Heterogeneity of the data on CD-ROM notwithstanding, it appears that when one factors
out the LandView related files (binaries, documentation, .DBF files, etc.), the core files
that remain are all ASCII-based and can be readily documented and preserved using an
integrated DTD (LandView is the viewing software that is provided).

For each state (58 corresponding state FIPS codes), there are one or more counties with
up to 14 county records (note that for 1992 there are a total of 3,428 counties):

e CTY: Each of the 14 county files has a fixed length record format with well-

defined fields:

Record Record Length Number of

Number (number of characters) Fields
1: 247 50
2: 208 24
3: 126 33
4: 63 9
5: 52 8
6: 85 14
7: 74 11
8: 36 8
A: 108 25
F: 73 20
G: 52 13
I: 52 11
P: 44 8
R: 46 9

Figure 6.1. County file format

49

For each state, there is an associated TGR92Sst. NAM and SCHOLDst.NAM file:

e Census_Entities: TGR92Sst. NAM is a geographic reference file, which
contains names & codes for the census geographic entities:

e Minor civil divisions
e Places

e Urbanized areas

e School_District: SCHOLDst.NAM contains school district codes & names

Each of these files has a data dictionary (see Appendix B). The first file is in
ASCII text, formatted in fixed length 80-character records, the second file type
has a record length of 39 characters. Each file also has an associated
documentation file (.DOC) that could be the basis of an associated DDI XML

documentation file, if useful.

All states make use of 4 global code tables:

1. Codes_StCty: FIPS State & County Codes (Technical Manual, Appendix A)

ST COUNTY

AREA NAME

ADR#

06 073

San Diego County

Full (85% to 100%)

2. Codes_StdAbbrevs: Standard Abbreviations (Technical Manual, Appendix D)

Feature STD Short USPS | Spanish | Translation
Type Abbrev. Abbreyv. Ref.
Calle Calle C CLL S Street

3. Codes_CensusFeatureClass: Census Feature Class Codes (Technical Manual,

Appendix E)

Census Feature Class Code

Text

D29

Shelter or Mission

4. Codes_UrbanizedArea: Urbanized Area Codes & Names (Technical Manual,

Appendix G)

Urbanized Area Code

Name

7320

San Diego

Object Level Structure: Sketch of an XML DTD.

50

XML elements are defined for all of the above categories. Specific element
attributes would, in our first pass sketch, mirror the corresponding data dictionary
attributes, and would closely resemble the "object level structure XML/DTD for the
CACCEF collection, as all of the attributes appear to be REQUIRED. Hence, repeated
individual data dictionary items are omitted in the DTD sketched below.

<!-- 14 County TIGER/Line92 record clements -->
<IELEMENT CTY_1>
<!ELEMENT CTY_2>
<!ELEMENT CTY_3>
<!ELEMENT CTY_4>
<!ELEMENT CTY_5>
<IELEMENT CTY_6>
<!ELEMENT CTY_7>
<!ELEMENT CTY_8>
<!ELEMENT CTY_a>
<!ELEMENT CTY_f>
<!ELEMENT CTY_g>
<!ELEMENT CTY_i>
<!ELEMENT CTY_p>
<!ELEMENT CTY_r>

<!-- TGR92Sst. NAM and SCHOLDstNAM record -->
<!ELEMENT Census_Entities>
<!ELEMENT School_District>

<!-- Global Code Table Entities -->
<!ELEMENT Codes_StCty>
<!ELEMENT Codes_StdAbbrevs>
<!ELEMENT Codes_CensusFeatureClass>
<!ELEMENT Codes_UrbanizedArea>

<!-- ATTIIST's for each of the above elements... -->
<IATTLIST ... NOT FURTHER DETAILED IN THIS SKETCH ...>

Figure 6.2. DTD structure for Tiger/Line data objects

Collection Level Structure.

The structure at the collection level can be described by an XML DTD, shown in Figure

6.3, which links XML elements defined in the previous section:

<!ELEMENT TIGERLine92 (codeTables, states)> list of global tables and States

<!ELEMENT codeTables (global code tables
Codes_StCty,
Codes_StdAbbrevs,
Codes_CensusFeatureClass
Codes_UrbanizedArea)>

51

<!ELEMENT states (state+)>
<!ELEMENT state (a state has code tables and counties
StName, Census_Entities, School_District, Counties)>

<!ELEMENT Counties (County*)> a county has up to 14 records
<!ELEMENT County (

CTY_17,CTY_2?,CTY_3?, CTY_47,CTY_5?, CTY_6?, CTY_7?,CTY_8?,
CTY_a?, CTY_f?, CTY_g?, CTY_i?, CTY_p?, CTY_1?)>

Figure 6.3. Collection DTD for Tiger/Line collection
6.2 Ingestibn process
Ingestion Statistics (real times @xena.sdsc.edu).
The ingestion of the Tiger/Line collection was done on a workstation, Xena.sdsc.edu.

The system configuration was a Sun Microsystems sun4u Sun Ultra 2 UPA/Sbus (2X
UltraSPARC 200MHz), System clock frequency: 100MHz, Memory size: 256 Megabytes

collection size: 24.5 Gbytes (on 44 CDs)
fifiles: 50,951

time to create tar archive: 19h 28m

time to store archive in HPSS: 18h 20m

Figure 6.4. Ingestion times for the Tiger/Line collection

The entire ingestion process was carried out manually over the course of a week. The
average ingestion time per CD (600MB size) was:

tar: 1592 sec. (~27 min.)
HSI put, HPSS: 1500 sec. (~25 min.) (=400Kbytes/sec)

The TAR time is the time needed to concatenate all data for storage. The HIS put time is
the time used to run the HSI utility to do the data storage. This I/O rate was limited by
the network connecting the workstation to the HPSS system.

52

7. Collection support - 104" Congress

COLLECTION DESCRIPTION:

A collection of acts, bills, resolutions etc. of the 104 Congress of the United States
OBJECTIVES:

Demonstrate preservation strategy for a formatted text collection.

RELATED COLLECTIONS:

All other collections (other than JTIC) have structured records, making this collection
rather unique.

APPROACH TAKEN:

Automatic meta-data extraction is achieved by interpreting filenames. Documents need
to be classified according to internal format similarity, so that classes of DTDs can be
proposed. Appropriate tag names need to be created. This process is illustrated by
looking at several example scenarios.

IMPORTANT FINDINGS:

The work is in progress, however, beyond modeling the documents in the collection, there
is also a need to model the relationships between different documents. Devising
meaningful classes of relationships would be an important finding.

53

7.1 Information model

Generation of DTD

Some data analysis and mining was performed in order to define a DTD for each type of
document in the collection. The validation of this DTD will require the involvement of
representatives from the appropriate agency to decide relevant document tag names for
use in the DTD. To illustrate the feasibility of converting these proceedings into XML
under a well-defined DTD, we give a few examples of the DTD conforming to some
documents in the collection. The corresponding XML files are at then end of this section.

Example 1:

For an amendment (suffix “eas” or “eah”) the DTD is given in Figure 7.1:

<!ELEMENT
<!ATTLIST
<!ATTLIST
<!ATTLIST

< !ELEMENT

DOCUMENT
DOCUMENT
DOCUMENT
DOCUMENT

CONGRESS

< !ELEMENT
<!ELEMENT
< !ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
< !ELEMENT
< !ELEMENT
<!ELEMENT
< ELEMENT
< !ELEMENT

(CONGRESS | RESOLUTION | ATTESTATION) * >
DOCID CDATA #IMPLIED>
REFERENCENUMBER CDATA #IMPLIED>
CLASS CDATA #IMPLIED>

(NUMBER | SESSTONNUMBER | (BODYOFCONGRESS) * | DATE) >

NUMBER (#PCDATA)* >
SESSIONNUMBER (#PCDATA)* >
BODYOFCONGRESS (#PCDATA) * >
DATE (#PCDATA)* >

RESOLUTION (TYPE|STATEMENT)* >
TYPE (#PCDATA)* >

STATEMENT (OPENING| (STRIKEOUT | INSERT) * |CLOSING) >
OPENING (#PCDATA)* >

STRIKEOUT (#PCDATA)* >

INSERT (#PCDATA)* >

CLOSING (#PCDATA)* >
ATTESTATION (#PCDATA)* >

Example 2

Figure 7.1 DTD for documents with suffix “eas” or “eah”

A more involved example is an Act document (suffix “eh” or “es”) which can be

modeled by the structure given below in Figure 7.2.

<!ELEMENT DOCUMENT (CONGRESS|ACT)* >

<!ATTLIST DOCUMENT DOCID CDATA #IMPLIED>
<!ATTLIST DOCUMENT REFERENCENUMBER CDATA #IMPLIED>
<!ATTLIST DOCUMENT CLASS CDATA #IMPLIED>

54

<!ELEMENT CONGRESS (NUMBER | SESSIONNUMBER |BODYOFCONGRESS |DATE) >

<!ELEMENT NUMBER (#PCDATA)* >
<!ELEMENT SESSIONNUMBER (#PCDATA)* >
<!ELEMENT BODYOFCONGRESS (#PCDATA)* >
<!ELEMENT DATE (#PCDATA)* >

<!ELEMENT ACT (PURPOSE|SECTION)* >

<!ELEMENT PURPOSE (#PCDATA)* >
<!ELEMENT SECTION (HEADING |STATEMENT |SUBSECTION)* >
<!ATTLIST SECTION NUMBER CDATA #IMPLIED>

<!ELEMENT HEADING (#PCDATAISHORTTITLE)* >
<!ELEMENT SHORTTITLE (#PCDATA)* >

<!ELEMENT STATEMENT (#PCDATA | AMENDMENT | SECTION |
ATTESTATION | TEXT)* >

<!ELEMENT AMENDMENT (CODE |STRIKEOUT | INSERT |REDESIGNATE)* >
<!ELEMENT CODE (#PCDATA)* >

<!ELEMENT STRIKEOUT (#PCDATA)* >

<!'ELEMENT INSERT (#PCDATA|PARAGRAPH |SUBSECTION |INSERT)* >
<|ELEMENT PARAGRAPH (TOPIC|TEXT|PARAGRAPH)* >

<!ATTLIST PARAGRAPH NUMBER CDATA #IMPLIED>

<!ELEMENT SUBSECTION (TOPIC[PARAGRAPH)* >
<!ATTLIST SUBSECTION NUMBER CDATA #IMPLIED>

<!ELEMENT TOPIC (#PCDATA)* >
<!ELEMENT TEXT (#PCDATA)* >
<!ELEMENT REDESIGNATE (#PCDATA)* >
<!ELEMENT ATTESTATION (#PCDATA)* >

Figure 7.2. DTD for an acts document

Note that since the act under consideration can be the modification of an existing act or
can result in changes in existing acts, the DTD for amendments from Example 1 is in
some sense “embedded” in Example 2. XML allows this “sharing” of smaller common
DTDs by one or more larger DTDs through a notation called Entity. In the case of this
example an Entity called Amendment can be specified separately and be declared in the
Act DTD. After the declaration it can be used as:

<!ELEMENT STATEMENT (#PCDATA | AMENDMENT | SECTION | ATTESTATION |
TEXT)* >

without having to expand AMENDMENT as done in the example DTD.

55

The XML version of an amendment is shown in Figure 7.3.

<DOCUMENT DOCID="f:hcl48eas.txt” REFERENCENUMBER = “H. CON. RES. 148"
CLASS="Concurrent Resolution”>

<CONGRESS>
<NUMBER>104"" CONGRESS</NUMBER>
<SESSIONNUMBER>2d Session</SESSIONNUMBER>
<BODYOFCONGRESS>Senate of the United States</BODYOFCONGRESS>
<DATE>March 21, 1996</DATE>

</CONGRESS>

<RESOLUTION>
<TYPE>AMENDMENTS</TYPE>
<STATEMENT>
<QPENING>
Resolved, That the resclution from the House of Representatives
(H. Con. Res. 148) entitled “Concurrent resolution expressing the
sense of the Congress that the United States is committed to
military stability in the Taiwan Strait and the United States
should assist in defending the Republic of China (also known as
Taiwan) in the event of invasion, missile attack, or blockade by
the People’s Republic of China.”, do pass with the following
</OPENING>
<STRIKEQOUT>Strike out all after the resolving clause
</STRIKEQUT>
<INSERT>
That it is the sense of the Congress—
(1) to deplore the missile tests and military exercises that
the People’s Republic of China is conducting from March 8 through
March 25, 1996, and view such tests and exercises as potentially
serious threats to the peace, security, and stability of Taiwan
and not in the spirit of the three United States-China Joint
Communiques;
(2) to urge the Government of the People’s Republic of China to
_ cease its bellicose actions directed at Taiwan and enter instead
into meaningful dialogue with the Government of Taiwan at the
highest levels, such as through the Straits Exchange Foundation in
Taiwan and the Association for Relations Across the Taiwan Strait
in Beijing, with an eye towards decreasing tensions and resolving
the issue of the future of Taiwan;
(3) that the President should, consistent with section 3© of
the Taiwan Relations Act of 1979 (22 U.S.C. 33020), immediately
consult with Congress on an appropriate United States response to
the tests and exercises should the tests or exercises pose an
| actual threat to the peace, security, and stability of Taiwan; (4)
that the President should, consistent with the Taiwan
Relations Act of 1979 (22 U.S.C. 3301 et seqg.), reexamine the
nature and quantity of defense articles and services that may be
necessary to enable Taiwan to maintain a sufficient self-defense
capability in light of the heightened military threat; and
(5) that the Government of Taiwan should remain committed to
the peaceful resolution of its future relations with the People’s
Republic of China by mutual decision.
</INSERT>
<STRIKEOUT>Strike out the preamble</STRIKEOUT>
<INSERT>
Whereas the People’s Republic of China, in a clear attempt to
intimidate the people and Government of Taiwan, has over the past
9 months conducted a series of military exercises, including

missile tests, within alarmingly close proximity to Taiwan;

Whereas from March 8 through March 15, 1996, the People’s Republic
of China conducted a series of missile tests within 25 to 35 miles
of the 2 principal northern and southern ports of Taiwan,
Kaohsiung and Keelung; Whereas on March 12, 1996, the People’s
Republic of China began an 8-day, live-ammunition, joint sea-and-
air military exercise in a 2,390 square mile area in the southern
Taiwan Strait;

Whereas on March 18, 1996, the People’s Republic of China began a
7-day, live-ammunition, joint sea-and-air military exercise
between Taiwan’s islands of Matsu and Wuchu;

Whereas these tests and exercises are a clear escalation of the
attempts by the People’s Republic of China to intimidate Taiwan
and influence the outcome of the upcoming democratic presidential
election in Taiwan; Whereas through the administrations of
Presidents Nixon, Ford, Carter, Reagan, and Bush, the United
States has adhered to a “One China” policy and, during the
administration of President Clinton, the United States continues
to adhere to the “One China” policy based on the Shanghai
Communique of February 27, 1972, the Joint Communigque on the
Establishment of Diplomatic Relations Between the United States of
America and the People’s Republic of China of January 1, 1979, and
the United States-China Joint Communique of August 17, 1982;

Whereas through the administrations of Presidents Carter, Reagan,
and Bush, the United States has adhered to the provisions of the
Taiwan Relations Act of 1979 (22 U.S.C. 3301 et seg.) as the basis
for continuing commercial, cultural, and other relations between
the people of the United States and the people of Taiwan and,
during the administration of President Clinton, the United States
continues to adhere to the provisions of the Taiwan Relations Act
of 1979;

Whereas relations between the United States and the Peoples’
Republic of China rest upon the expectation that the future of
Taiwan will be settled solely by peaceful means; Whereas the
strong interest of the United States in the peaceful settlement of
the Taiwan question is one of the central premises of the three
United States-China Joint Communiques and was codified in the
Taiwan Relations Act of 1979; Whereas the Taiwan Relations Act of
1979 states that peace and stability in the western Pacific “are
in the political, security, and economic interests of the United
States, and are matters of international concern”;

Whereas the Taiwan Relations Act of 1979 states that the United
States considers “any effort to determine the future of Taiwan by
other than peaceful means, including by boycotts, or embargoes, a
threat to the peace and security of the western Pacific area and
of grave concern to the United States”; W

hereas the Taiwan Relations Act of 1979 directs the President to
“inform Congress promptly of any threat to the security or the
social or economic system of the people on Taiwan and any danger
to the interests of the United States arising therefrom”;

Whereas the Taiwan Relations Act of 1979 further directs that “the
President and the Congress shall determine, in accordance with
constitutional process, appropriate action by the United States in
response to any such danger”;

Whereas the United States, the People’s Republic of China, and the
Government of Taiwan have each previously expressed their

57

commitment to the resolution of the Taiwan question through
peaceful means; and

Whereas these missile tests and military exercises, and the
accompanying statements made by the Government of the People’s
Republic of China, call into serious question the commitment of
China to the peaceful resolution of the Taiwan question: Now,
therefore, be it.

+ </INSERT>

<CLOSING>
Amend the title so as to read: “Expressing the sense of
Congress regarding missile tests and military exercises by the
People’s Republic of China.”.

</CLOSING>

</STATEMENT>

</RESOLUTION>

<ATTESTATION>Secretary</ATTESTATION>

</DOCUMENT>

Figure 7.3. DTD for an amendment

Aside from modeling documents in the collections, we also need to model the
relationships between different documents. The foremost relationship is among
documents that bear the same document number (denoted as <number> above), but
which have different text forms. Although each document is a distinct physical entity,
they represent different logical stages that a bill goes through from its introduction,
through various considerations to its final enactment or suspension of action. In the
collection provided, documents Hc200ih.txt, Hc200rh.txt, Hc200eh.txt and Hc200rds. txt
represent the steps through the lifecycle of the bill.

A second class of relationships is when one document in a collection refers to another
document that may not be in the same collection. A typical example is a reference to a
section in the Constitution or a prior Act proposed to be modified.

7.2 Ingestion process

We have converted the collection into a tar file and have placed the tar file in HPSS, our

long-term persistent storage system. The time for the ingestion process is reported in
Table 7.1

Size 317M bytes
Number of Files 11437
Time to convert to tar file | 13m 57s
Time to store in HPSS 14m 56s

58

Table 7.1. Ingestion times for 104" Congress data

The data for this collection is digital, although it has been transcribed from paper
documents. While the quality of the digital document does not degrade, we are unsure of
the faithfulness of the digital records to the original. We have observed that the process of
transcription from paper document to digital document sometimes creates a semantic
ambiguity in the way a reference is made to the content of the document. For example, an
amendment consists of insertions and deletions of text from an original document. The
place of insertion (or deletion) is often referred by line number and page number.
However, in the digital version of the document, page breaks are not marked, leading to
potential information loss in establishing the correct reference.

7.3 Storage requirements

The size of the raw text files is 317 MB. The size of the tar file is 325.8 MB, a modest
3% increase.

59

60

8. Collection support - Vote Archive Demo 1997 (VAD97)

COLLECTION DESCRIPTION:

This collection contains U.S. House of Representatives Roll Call Votes for the 105"
Congress - 1st Session (1997) as compiled through the electronic voting machine. The
collection is very well structured with good documentation

OBJECTIVES:

Demonstrate preservation strategy for a mix of fixed-format and HTML pages.
RELATED COLLECTIONS:

This collection naturally relates to the 104" collection. However, the format of these two
collections is very different. One primarily deals with semi-structured text (HTML
pages), the other with unstructured text (ASCII files) where structure needs to be
discovered.

APPROACH TAKEN:

This collection has been ingested but not further processed. The structure of the
associated text files and of the HTML pages is tabular, hence these files can be easily
XML-tagged according to a well-defined DTD.

IMPORTANT FINDINGS:

An important finding is the need to preserve Web page links and the associated content to
represent this collection. Further study is required on the limits to the amount and type of
information one would want to preserve when dealing with Web page links.

61

8.1 Information model

The major issues relate to the validation of the data collection which contains duplicate
data sets. For instance, the HTML index file contains not only pointers to the roll call
votes, but also to a subset of the records from the last roll call file. The data sets as
received can be archived. However it will be difficult to maintain the duplicate data
records in a database representation of the collection. It is possible to add attributes to
denote when duplicate data records are provided. The question is whether such
information will be of value when the collection is archived.

8.2 Ingestion process

We have converted the collection into a tar file and have placed the tar file in HPSS, our

long-term persistent storage system. The time for the ingestion process is reported in
Table 8.1:

Size : 33 Mbytes

Number of Files 1,288 files (640 rolls and votes)
Time to convert to tar file 3m 23s

Time to store in HPSS 2m 25s

Table 8.1. Ingestion times for the Vote Archive
8.3 Long term preservation requirements

The following 3 screen snapshots illustrate some of the issues involved with this
collection. The first screen is the main index.htm file. While the first column in the table
points to a tabular document with a regular structure (see 2" screen snapshot), the third
column in the table points to a related Web site (see 3" screen snapshot). Note that
including the information that is linked over the Web requires accessing each Web site
and retrieving additional data beyond that provided in the original tables.

Decisions on standards for representing the related but external links are needed, as well
as policy decisions on how much or how little of this information needs to be preserved.

Major issues to be addressed are: preservation of the Web itself, and information
discovery or wrapping of Web sites.

62

™

U.S. House of Representatives Roll Call Votes
105t Congress - 15t Session (1997)

as compiled through the electronic voting machine
by the House Tally Clerks under the direction of Robin H. Carle, Clerk of the House

{Result designators ave P for Passed, F for Failed, and A for Agreed To)

Date

Question

Title /Description

13-Nov

On Agreeing to the
conference Report

icommerce, state, Justice, the Judiciarp Appropriations,
Py 1998

13-Kov

on Motion to Recommit

I
i
]

F

icommerce, State, Justice, the Judiciary Appropriations,
iFy 1998

13-Nov

is_coN
168

0n Agreeing to the
Resolution

gprovidix\g for the adjournment of the two Houses

B DUy Y
13-HOV izt

on motion to suspend the
rules and agres

H
imtermational Tribunal to Try Iraqgi War Criminals
i

13-NOV {H RES

on Agreeing to the
Resolution

waiving points of order against the conference report
on H.R. 2267; commerce, Justice, and State, the
Judiciary Appropriations for F.¥. 1898

13-Nov 'n_xEs 322

on Motion to Suspend the
Rules and Agree

Providing for the consideration of H.R. 865 and the
Senate Amendment tharsto

326

i
13-HOV ¥ BES 326
;

On Rgresing to the
Resolution

%committee on Government Reform and oOversight

326

{
13-Nov :x RES

on Oxdexing the Previous
Question

icommittn on Government Reform and Oversight
i

301

i
13-Nov i RES 301

on Agreeing to the

iResolution

amending the Rules of the House of Representatives to
repeal the sxception to the requirement that public
committse proceedings be open to all the media,

13-Nov |

on RAgreeing to the
conference Report

IForeign operations Appropriations, F¥ 1398
!

314

i
12-NoV {{_RES

on Agreeing to the
Resolution

Waiving a requirement of clause 4(b) of rule XI with
irespect to consideration of certain resolutions
ireported from the Committee on Rules

2-Nov

139

on Agreeing to the
Resolution

iProviding for consideration of 5. 738; Amtrack Reform
iand Accountability Act

1 Roil Cails 866 Thr 640

Roll Calls 500 Thru 589
Roll Calls 400 Thru 499
Roll Calls 300 Thru 399
Roll Calls 200 Thru 289
Roll Calls 100 Thru 189

Roll Calls 1 Thru 89

Figure 8.1. First Screen Snapshot of the main index file

File index.htm when viewed in a web browser is actually the above master index

document.

63

G

FINAL VOTER

(Republicans in roman; Democrats in itelic; Independents underlined)

HR 2267 YEA-AND-NAY

13-NOV-1997

QUESTION: On Agreeing to the Conference Report
BILL TITLE: Commerce, State, Justice, the Judiciary Appropriations, FY 1998

ESULTS FOR ROLL CALL 640

PRES |

N

REPUBLICAN

DEMOCRATIC

INDEPENDENT

'TOTALS

-—— YEAS 282 -—-

Abercrombie

iGoodling

iObersiar

Aderholt

Gordon

Cbey -

gAx‘Zen

Goss

Oxley

Andrews

Graham

Packard

Archer

Granger

Pallone

Armey

Greenwood

Pappas

gBachus

Gutierrez

Parker

iBaldacci

Gutknecht

iPascrell

Ballenger

Hall (OH)

iPastor

Barcia

Hall (1%)

Paxon

Barrett (NE)

Hamilion

Pelosi

Barrett (Wi

Hansen

Peterson (MN)

Barton

Harman

Peterson (PA)

Bass

Hastert

Pickering

Figure 8-2. Second screen snapshot of the roll 640 link

This screen snapshot was obtained after following the roll 640 Web link.

64

B i

Bili Summary & Stutus for the 105th Congress

NEW SEARCH | HOME | HELP

i H.R.2267 (Major Legislation)
{ Public Law: 105-119 (11/26/97) Text, PDF, Line Item Veto: See Actions
SPONSOR: Rep Rogers (introduced 07/25/97)
4 A bill making appropriations for the Departments of Commerce, Justice, and State, the Judiciary, and
1 related agencies for the fiscal year ending September 30, 1998, and for other purposes.

; All Bill Summary & Status Info (except Bill Text)
Titles

{ Status:

® Detailed [egislative Status
o Floor/Executive Actions

» Congressional Record Page References

Committees;

e Referral, Reporting, Origin, Subcommittees
» Other Committee Information

Amendments
Subjects
Cosponsors (None)

Figure 8.3. Third screen snapshot of Web linked data

This screen corresponds to the Issue H R 2267 linked field of Roll 640.

65

66

9. Collection support — Electronic Archiving Project (EAP)

COLLECTION DESCRIPTION:

The collection consists of a subset of the images in NAIL (NARA Archival Information
Locator) plus the NAIL lookup table with associated meta-data. This collection was the
most difficult to manage, as the digital objects and meta-data were provided on three
different types of media. Also, the meta-data is basically the output from a program, and
is not structured via a standard format.

OBJECTIVES:

Demonstrate preservation strategy for a collection of images, using a proprietary
database format.

RELATED COLLECTIONS:

This collection is similar to the AMICO digital image collection. The techniques and
tools demonstrated for the AMICO collection should also apply to EAP.

APPROACH TAKEN:

While ingestion of the data was performed and while we attempted to discover the
underlying image meta-data, we focused instead on a similar image collection. Please
refer to AMICO.

IMPORTANT FINDINGS:
Please see the AMICO section.

67

9.1 Information model

The NAIL lookup table contains all meta-data for the individual objects. However, the
table is in a proprietary format for which we do not have documentation. A preliminary
analysis revealed a RECORD STRUCTURE, where each record contains a sequence of
ATTRIBUTE/VALUE PAIRS.

There seem to be around 80-100 attribute names. Their meaning can be partially (and
painfully) "reverse-engineered" by matching (meta)data entries on the NAIL Web site
with corresponding ones in the NAIL lookup table (see the EAP subdirectory described
in Appendix E).

MISCELLANEOUS:

Ingestion of raw data and some preliminary analysis of the proprietary format were
straightforward; extraction of meta-data at the object level will be difficult, especially if
no documentation or tools for parsing the lookup table are available.

9.2 Ingestion process

So far we have converted the collection into a tar file and have placed the tar file in
HPSS, our long-term persistent storage system. The time for the ingestion process is
reported below:

Size 861 Mbytes
Number of Files 11,543
Time to convert to tar file | 41m 37s
Time to store in HPSS 37m 13s

68

10. Collection support - Combat Area Casualties Current File (CACCF)

COLLECTION DESCRIPTION:

The collection contains the Vietnam era Combat Area Casualties Files (CACCF), a list of
Vietnam War casualties from 1957 to 1986, compiled by the Secretary of Defense.

OBJECTIVES:

Demonstrate preservation strategy for a fixed-record format collection.
RELATED COLLECTIONS:

Other highly structured collections are similar, such as Tiger92 and 104"
APPROACH TAKEN:

Due to the highly regular structure, a relational database schema and an XML DTD are
built for this collection. Ad-hoc SQL queries are generated as well as XML-queries
using the XMAS query language. Inconsistencies in the data are detected upon the
loading of the records.

IMPORTANT FINDINGS:

Because the data can be represented as a relational database, a variety of consistency
checks can be performed using the built-in mechanisms provided by such database
systems (such as counts by casualty country, etc.).

69

‘ 10.1 Information model

Collection Level Structure.
The structure at the collection level can be described by the following XML DTD:

<!ELEMENT caccf_collection (caccf_database)*> list of CACCEF databases
<!ELEMENT caccf_database (a single database
date_id, creation date, identifies the database
record_size, size of each record (bytes)
caccf_records the actual data records
>
<!ELEMENT caccf_records (
caccf_record* list of cacef records
)>

Figure 10.1. DTD for the CACCEF collection

Object Level Structure: XML DTD.

The structure and meaning of the individual data objects (records) can be obtained from
the hardcopy documentation, which describes the format of the most recent versions (i.e.,
where record_size = 164 bytes). For these a DTD was derived which represents every
record field as an attribute (alternatively, one could use subelements instead of attributes).
The DTD is shown in Figure 10.2.

<!ELEMENT caccf_record EMPTY

)>

<!ATTLIST caccf_record
ms CDATA #REQUIRED
cc CDATA #REQUIRED
tc CDATA #REQUIRED
m CDATA #REQUIRED
na CDATA #REQUIRED
dp CDATA #REQUIRED
sn CDATA #REQUIRED
mg CDATA #REQUIRED
pg CDATA #REQUIRED
dd CDATA #REQUIRED
he CDATA #REQUIRED
hs CDATA #REQUIRED
oc CDATA #REQUIRED
db CDATA #REQUIRED
rc CDATA #REQUIRED
ai CDATA #REQUIRED
ra CDATA #REQUIRED
re CDATA #REQUIRED

all info is in the attributes

length meaning
Military Service (DoD Component)
Country of Casualty
Type of Casualty
Reference Number (File Ref. No)
8 Name (of Casualty)
Date Record Processed (YYMM)
Social Security OR Service Num.
Military Grade (Grade or Rate)
Pay Grade (Grade or Rate)
Date of Death (MM/DD/YY) (Casualty)
“Home of Record” City (Place)
“Home of Record” State Code
Service Occupation Code
Date of Birth MM/DD/YY)
Reason (Cause of Casualty)
Aircraft or Not Aircraft
Race
Religion Code (Religious Denom.)

D = 00 AR R 00N B O B L N

70

le

se
ci

PP
dt

br
ag
sc
co
ty
pc

mc
pr

>

CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED

CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED

B B BD e D3 LI == O\ e bt et bt DD

NN

N~

Length of Service in Years
Marital Status

Sex

Citizen Code

Posthumous Promotion
Date Tour in Southeast Asia
Last Record Code

Body Recovered or Not
Age at Time of Casualty
Component (Service Component)
Comments

Type

Province Code (South Vietnam Provinces &

Military Regions)
CORPCD
PROCD
Flag

Figure 10.2. DTD for CACCEF data objects

Object Level Structure: Relational Schema.

Loading sources with regular structure into a relational database (RDB) has several

benefits as can be seen from the CACCEF case (cf. below):

e Inconsistencies in the data can be automatically detected using the RDB’s built-in
consistency checks (data types, uniqueness of keys, referential integrity, etc.)
e Powerful ad-hoc SQL queries can be used to further clean the data from

inconsistencies
o Interesting information from the collection can be mined
Different versions of the collection can be compared

e Using RDB-to-XML wrappers, after loading the data into the RDB, the RDB-to-

XML wrapper provides an XML view on the collection

For loading the CACCEF into a relational database (here: Oracle), the following schema

was used:

create table CACCF (

REC_NO

int not null, --
MIL_SERVICE char (1),
CASUALTY_COUNTRY char (2),
CASUALTY_TYPE char (2),

REF_NO char (5),
NAME char (28),
PROCESSED char (4),
SSN_SERVICE_NO char (9),
GRADE char (4),
PAY GRADE char (2},
DIED date,
HOR_CITY char (20),
HOR_STATE char (2),
OCCUPATION char (5),
BORN date,

DICE: no. as found in the source
Military Service (DoD Component)
Country of Casualty

Type of Casualty

Reference Number (File Ref. No)
Name (of Casualty)

Date Record Processed (YYMM)
Social Security OR Service Num.
Military Grade (Grade or Rate)
Pay Grade (Grade or Rate)

Date of Death (MM/DD/YY) (Casualty)
“Home of Record” City (Place)
“Home of Record” State Code
Service Occupation Code

Date of Birth (MM/DD/YY)

71

CASUALTY_REASON char (1), -- Reason (Cause of Casualty)

AIR char (1), -- Aircraft or Not Aircraft
RACE char (1), -- Race
RELIGION char (2), -- Religion Code (Religious Denom.)
SERVICE_LENGTH char (2), -- Length of Service in Years
MARITAL_STATUS char (1), -- Marital Status
SEX char (1), -- Sex .
CITIZEN char (1), -~ Citizen Code
PH_PROMOTION char (1), -- Posthumous Promotion
SEA_TOUR date, -- Date Tour in Southeast Asia
LAST_RECORD char (1), -- Last Record Code
BODY_RECOVERED char (3), -~ Body Recovered or Not
-AGE char (2), -- Age at Time of Casualty
COMPONENT char (1), -~ Component (Service Component)
COMMENTS char (29), -- Comments
TYPE char (2), -- Type
PROVINCE char (2}, -- Province Code (South Vietnam Provinces and
» Military Regions)
CORPCD char (2}, -- CORPCD
PROCD char (2), -- PROCD
FLAG char (2}, -- Flag
NOTES varchar (1000) -- DICE: notes/corrections made
PRIMARY KEY (SSN_SERVICE_NO) ,
- UNIQUE (REC_NO)

Figure 10.3. Schema for CACCF collection

The first and last attributes (marked with “DICE”) were added to record the changes
-made when loading the data into the database.

10.2 Ingestion process

When reading the EBCDIC encoded files from tape, they were converted to ASCII (using
the UNIX command “dd” for converting and copying files) and temporarily stored on
disk. A Perl script was used to create the XML version (caccf2xml) and the Oracle
version (caccf2oracle) of the data collection from the raw files. The consistency checks
enforced by the relational database revealed a number of problems with the CACCF
database (see below).

Ingestion Statistics (real times @xena.sdsc.edu).

Ingestion was done on a Sun workstation, with the system configuration: Sun
Microsystems sun4u Sun Ultra 2 UPA/Sbus (2X UltraSPARC 200MHz), System clock
frequency: 100MHz, Memory size: 256 Megabytes.

collection size: 75,740,672 bytes

fifiles: 8 (different versions of the CACCF database)
#records/file: between 58,152 and 58,181

time to create tar archive: 2m 41s

72

time to store archive in HPSS: 2m 39s

conversion to XML: . 1m per CACCF database (Perl script
@xena.sdsc.edu)

Figure 10.4. Ingestion times for the CACCF collection

10.3 Storage requirements

The XML representation with the DTD shown in Figure 10.2 increases the file size by a
factor of 2 or more. This is due to the fact that there are many short fields per record,
each of which has to be marked. For example, using the XML DTD in Figure 10.2 the
version RG330.CAC.C951129 requires 22,444,477 bytes vs. 9,540,700 bytes in the
given format (size expansion ratio = 2.35:1).

By creating the XML data from the raw data on the fly, the overhead in storage can be
completely avoided.

Inconsistencies in the Data.

Several SQL queries were executed and revealed that the social security number was
NOT UNIQUE (two distinct entries with the same SSN/service number), and that
several DATES WERE INCORRECT (Jun/Nov 31% etc.)

These inconsistencies were reported by the database system due to the use of the key
constraint on SSN and the date format. The changes made when loading the data into the
database are documented with the data and can be retrieved as follows:

SQL> select REC_NO,NAME, NOTES from CACCF where NOTES is not null;
54022 MC DANIEL JOHN THOMAS

SSN_SERVICE_NO was not unique; added “-?~"

6809 MICHAEL DON LESLIE

changed 31-JUN-1947 to 30-JUN-1947

[...]

15 rows selected.

Figure 10.5. Select statements for retrieving inconsistent data

Detecting Incomplete Information.
The database can also be used to identify incomplete records for specific attributes.

/* Find records with incomplete BORN or DIED date: */
SQL> select REC_NO, NAME, BORN, DIED, AGE from CACCF
where BORN is null or DIED is null;

REC_NO NAME BORN DIED AG
2114 SEVENBERGEN JERRY L 16-MAR-66 0
3882 DOMINGUEZ MICHAEL J 10-SEP-66 0
3883 JORDAN ALLAN H 10-SEP-66 0
33997 HALIBURTON MICHAEL R 08-AUG-70 0

73

17 rows selected.

/* How many entries do NOT have a value for ‘Date Tour in Southeast
Asia’? */ .
SQL> select count (*) from CACCF where SEA_TOUR is null;
COUNT (*)

8241

Figure 10.6. Select statements for finding incomplete data

Detecting Possible Errors

The distribution of values for a certain attribute can be obtained by a query of the form

select count(*), <ATTRIBUTE>
from CACCF group by <ATTRIBUTE>
order by count(*) desc;

For example,

SQL> select count(*), SERVICE_LENGTH from CACCF
group by SERVICE_LENGTH
order by count (*) desc;

reveals inconsistencies in the SERVICE_LLENGTH attribute (e.g. 3 different
representations of presumably the same value “four”, i.e. “O4”, 04", and “4”):

Value-Added Data Retrieval.

If data is maintained in a structured form in a database (relational, object-oriented, or
XML), much more flexible retrieval mechanisms can be provided to the user of the
archive. As an example, consider the following “data mining/analysis” queries, which can
be directly executed against the collection:

/* What is the number and min/max/average age of the casualties over entries where
AGE is available? */

SQL> select count(*), min(AGE), max(AGE), avg(AGE)

from CACCF
where not AGE = ‘0’;

COUNT(*) MI MA AVG(AGE)

58164 16 62 22.7932742

74

The result of the query shows that minimum age was 16 years and the maximum
was 62 years, with an average age of 22.79 years, out of a total number of casualties
equal to 58,164.

/* Show The Distribution Of Casualties by Country */
SQL> select count(*), CASUALTY_COUNTRY
from CACCF group by CASUALTY_COUNTRY order by count(*) desc;

COUNT(*) CA

55621 VS
1124 VN
729 LA
520 CB
177 TH

10 CH

The result lists the number of casualties by country acronym. Interpretation of the
acronym requires an associated data dictionary. These are just a few examples which
show how an RDB can yield “value-added” data by means of a flexible query language.
Similar techniques can be applied to less regular data, provided a corresponding query
language is available (e.g., XML data can be queried with the XML Matching And
Structuring Query Language, XMAS [9]).

75

11. Collection support - Patent Data (USPTO)

COLLECTION DESCRIPTION:

A corpus of about 2 million U.S. patent text documents in a proprietary markup format,
called the Greenbook format. Documents cover the time period beginning in 1971 until
1998. Documents were provided on 3480 tapes in the format generated by the USPTO
where each tape contains all the patents issued in a given week. A total of about 1800
tapes were read. On average, each tape contains about 100MB of data and the total
amount of data in bytes is about 150GB.

OBJECTIVES:

Demonstrate the capacity to ingest, validate, archive, and provide access to a large
collection of archival text documents. Activities include conversion from legacy format
to a standards-based formats and enumeration of any errors and inconsistencies
encountered in the conversion process. Documents are also checked for correctness and
consistency using other approaches including use of data analysis techniques and
consistency checking during database load.

RELATED COLLECTIONS:

This is a collection of text documents which contain document markup. Related
collections include the E-mail collection, which is a collection of text documents without
markup, but where the markup can be inferred by processing the document using
appropriate scripts.

APPROACH TAKEN:

The corpus of patent text documents was converted based on an SGML DTD as part of
the DOCT project. An XML DTD is being defined for a second conversion of the
collection. This conversion is planned for August, 1999.

IMPORTANT FINDINGS:

For a legacy data collection spanning a period of over 20 years, we found the collection
to be in very good shape in terms of correctness and consistency of the documents.
During the conversion from legacy to SGML format, only about 50 documents raised an
error flag. In most cases, the documents were correct but the conversion script needed to
be fixed. Only a handful of documents had errors most of which were easy to fix. Less
than 5 remained which needed more work.

The claims graph analysis detected anomalies in about 1% of all the patents. A sample of
these patents indicated that most of these are caused due to typographical errors. More
important is the idea that such checking can be performed at the source, when the
documents are originally submitted to the agency, thereby removing this possible source
of error.

It was found that storing the "raw" data (i.e. the SGML files) as well as the data loaded
into a relational database was useful to support long term preservation and immediate

71

access. This was done using an advanced version of IBM’s DB2 database system
which is able to store large object data directly into the HPSS archive, rather than on disk.

78

11.1 PATENT DATA: FURTHER DETAILS

The corpus of patent text documents was ingested, validated, and archived using a multi-
step process as described below:

(1) Reading of 3480 tapes directly into the HPSS archive at SDSC. The 3480 tapes
received from the USPTO were read directly into the HPSS system at SDSC. Each
tape corresponds to a single file in HPSS. Each such file contains the document text
for all patents filed during a week. Documents are marked up using markup tags
defined by the USPTO’s proprietary Greenbook standard.

Tapes were received in batches, and were read into the HPSS system by the
Operations staff at SDSC.

(2) Conversion of Greenbook files into SGML, based on a standard DTD. The USPTO
uses an SGML DTD for describing patent documents. This DTD is based on an
international standard DTD from the World Intellectual Property Organization
(WIPO). Scripts were written to convert each Greenbook patent to an SGML
document conforming to the specified DTD. In the process, any errors or
inconsistencies in the document were recorded. In addition, the scripts were updates
as required, as they encountered new aspects of the patent documents which were not
originally accounted for (e.g. appearance of a subscript or superscript in the title of a
document).

Some of the so-called errors that were flagged by the conversion process were due to
shortcomings of the conversion script, which were fixed as they were discovered.
Other errors were due to anomalies in some documents which were immediately
addressed by the USPTO. At the end, there were only about 10 documents (out of
about 2 million), which required further attention for corrections.

The entire conversion process for converting about 1200 Greenbook files containing
about 2 million patents and 150GB of data, took about 40 hours using 15 parallel
streams on a parallel Sun Enterprise Server computer (i.e. a total of about 600 hours)

(3) Storage of converted SGML files in HPSS. The converted SGML documents where
then stored back as files (one per week, as in the original Greenbook) in HPSS.

(4) Design of a relational database schema based on Greenbook information and SGML
DTD. Given the Greenbook specification and the SGML DTD, a relational schema
was designed for storing documents efficiently. The schema was normalized and

79

contained one master table with individual tables for each of the sub-sections of the
patent document, e.g. authors, attorney information, abstract, claims section,
classificiation information, etc. In some cases, several tables are required for a sub-
section due to the complex, nested nature of that sub-section.

The normalized schema contains about 40 relational tables.

(5) Loading of documents into relational database using appropriate mapping of data

from the document into the relational schema. Once the relational schema was
defined, database load scripts were written to load the patent document data into
relational tables.

The total elapsed time for loading data into all the 40 tables in the database is about 4
days.

(6) Analysis of data in relational database to extract claims graphs for each patent and

analysis of these graphs for consistency checking. A program was written to process
each patent and extract the claims graph for the patent. The claims graph shows the
dependencies among claims within a given patent. Once the graph is constructed, one
can perform a variety of checks on the graphs to verify the consistency of the data.
For example, one can check for cycles in the graph (there should be none)

The graph analysis program took a total elapsed time of 26 hours.

80

12. Collection support - Image collection (AMICO)

COLLECTION DESCRIPTION:

The AMICO image collection consists of a sample of high resolution images of art pieces
acquired from the Art Museum Image Consortium (or, AMICO).

OBJECTIVES:

Demonstrate preservation strategy and sustained access to an image data collection,
along with associated meta-data.

RELATED COLLECTIONS:

This collection is strongly similar to the EAP collection. The meta-data portion is similar
to the Patent collection.

APPROACH TAKEN:

Meta-data was provided in proprietary markup format. A DTD was designed for the
meta-data, based on the data dictionary provided by AMICO. The meta-data files were
then converted into XML documents. Images are stored as binary objects.

IMPORTANT FINDINGS:

This work may lead to the formulation of key markup elements useful across all image
collections.

82

12.1 Information model

Members of AMICO have established meta-data standards for describing art objects as
well as the high resolution images of the art objects. The archiving process consists of,
first, specifying an XML DTD to capture all the meta-data. This DTD is based on the
data dictionary standard created by the AMICO consortium. Next, all the meta-data
records provided by AMICO are converted into an XML form based on the particular
DTD. Finally, the meta-data is archived along with the corresponding high-resolution
images.

Organizing the Collection level meta-data

The AMICO data dictionary was provided to us in its original form as a Microsoft Excel
spreadsheet. This is available at

http://www.npaci.edw/DICE/AMICO/Demo/amico-dd.1.2.xls.

The data dictionary includes a meta-data specification for the art objects as well as the
corresponding digital objects, i.e. the images associated with the art objects. Thus, there
are two classes of meta-data for each art object. Multiple images can be taken of a given
art object. In addition, thumbnail image representations can be generated for each art
object. Thus, an art object can be associated with one or more digital image objects. For
ease of querying, archiving, and retrieving, a single meta-data object is associated with
each art object. This meta-data object contains the art object (or, artifact) meta-data and
the image object (or, media) meta-data—for each associated image. The archival object is
composed of the meta-data object along with the set of associated image objects.

OBJECT LEVEL STRUCTURE/META-DATA

An XML DTD was designed for the meta-data object. Additionally, the DTD is designed
to group the meta-data elements into an additional abstract classification, such as, “What
is it”, “What is it called”, “Who made it”, based on the classification employed by
AMICO itself. This meta-data DTD is available in amico-2inl1.DTD.

A conversion program then translates the AMICO data dictionary records into XML
meta-data documents that conform to the meta-data DTD.

Demo 1. Deriving the AMICO schema:
Demo 1.1. A first DTD, accessible at
http://www.npaci.edw/DICE/AMICO/Demo/amico-from-perl-DTD.txt ,

was obtained from the given AMICO data dictionary (which was provided as a
spreadsheet), using a Perl script. '

The spreadsheet is accessible at

83

http://www.npaci.edw/DICE/AMICO/Demo/amico-dd.1.2.xls
The Perl script is accessible at
http://www.npaci. edu/DICE/AMICO/Demo/amlco dd2dtd

Demo 1.2. This DTD was rewritten manually into the final AMICO DTD. The final
DGD is available at

http://WWW.npaci.edﬁ/DICE/AMICO/Demo/amico—Zin1—DTD.txt
Demo 2. Conversion to XML:

The incoming raw data records were converted to XML using a Per script, available at
http://www .npaci.edu/DICE/AMICO/Demo/amico2xml

Fig. 12-1 shows the input and output at this stage (left side: incoming raw data records;
right side: records in XML format).

% m:»»sm 1R, 2512 A
SO S Cermmics <08 ¥
o L0
BT LR b O3S oy B9 100 0T on)
% S
¢ WL

.?ﬁﬁi:t‘gié‘rl‘mﬁ. vkl 1Tt Camituig s T

}’ Y
«%w’”ﬁwwm Kyotn Srefertures/Oors -
P~ w:i":-\,:\. .

A ‘Ma !:auewxwfm» .
ST MR Yok, Mk York, LISRE T 3? N
20081070 251 008y
IOy Al Sude:t'w ﬁh’: L ardm MM l:l;

Figure 12-1: Raw data records (left) and tagged XML (right)

84

12.2 Ingestion process

The result of the ingestion process is the storage of the entire AMICO collection in an
archival storage system. Efficient access to the meta-data and image objects is provided
using scaleable database and archival storage technology. The meta-data can be queried
and accessed in the form of XML documents using the state of the art database
technology. Currently, the best technology for providing a large number of users efficient
concurrent access to large scale databases is, arguably, the relational database technology.
Thus, the meta-data, in XML form, is converted into corresponding relational tables so
that the entire collection is efficiently searchable using a relational database management
system (RDBMS).

12.3 Data access requirements
Relational Storage Technology

For experimenting with relational technology, the AMICO meta-data was implemented
as a relational database. For this purpose, a normalized relational data dictionary was
designed, and the sample data was loaded into the SRB/MCAT system [5,6]. The data
dictionary is available at

http://www.npaci.edu/DICE/AMICO/Demo/amico.dd]

DEMO INFO
Online versions of the AMICO demo are available at:

e AMICO/XML demo: http://www.npaci.edu/DICE/AMICO/Demo/
AMICO/SRB demo: http://stb.npaci.edu/

The sample data consists of

e images (thumbnails and full images),
e an associated meta-data file, and
o the AMICO data dictionary.

There are two kinds of AMICO meta-data: the amico-objects meta-data (Fig.12-1, top

- and bottom sections of the left-hand side) contains meta-data about the artifact (title,
creator, creation time, etc.), whereas the amico-media meta-data (Fig.12-1, middle
section of the left-hand side) contains meta-data about the digital image (resolution, size,
compression, etc.)

The AMICO demo illustrates various steps for archival storage of image collections and
their associated meta-data.

Demo 3. Querying XML.

The tagged AMICO data can be queried using an XML query language. For the demo,
we used the XMAS (XML Matching And Structuring) language.

85

Example.

The query “Find the title, type, and image identifier of paintings” can be expressed in
XMAS as follows:

CONSTRUCT <my_object>

<my_title> $Title </my_title>
<my_type> $Type </my_type>
<my_img> $Img </my_img>
</my_object>
WHERE
<am_objects>
<am_object>
<OTY> $Type </OTY>
<OTG>
<OTN> $Title </OTN>
</OTG>
<RIG>
<RIL> $Img </RIL>
</RIG>
</am_object>

</am_objects>
IN “http://www.npaci.edu/DICE/AMICO/Demo/amico-objects.xm]”
AND substr(“Painting”, $Type)

.

This query is applied against the XML DTD tagged data.

Demo 4. Presenting XML

One of the main advantages of using XML is the separation of content (data has
“semantic” tags) and presentation. A standard way to handle the latter are style sheets,
which prescribe how the different elements are to be displayed. For the demo we used
XSL style sheets. Fig. 12-2 shows the input and output of the XML presentation.

86

3. Rendered Output

2. XSL Style
Sheet Script

S

W

o

wetORE IRl Sese-
NG PR kb ey

ki

mw

L e

e

s BRI e

ety wpdiha
AIHPANGE LA TR

R R e B .

wBRY
i e

eI PR o D

1. AMICO
XML Data

XML Style sheets

ication of
87

Appli

2

igure 12

F

13. Collection support - JITC Collection

COLLECTION DESCRIPTION:

The collection contains a set of miscellaneous office automation products in proprietary
file formats. Files include word processing documents (e.g. Microsoft Word files),
images (e.g. gif, jpg), and other binary files such as NITF (National Imagery Transfer
Format) satellite imagery related data. This collection is intended to be an office
automation suite of files that are used by the Defense Department to test high-volume
servers. The collection features a mixture of proprietary formats.

OBJECTIVES:

Demonstrate preservation strategy for a heterogeneous collection of binary files.
RELATED COLLECTIONS:

Relates to the E-mail collection where attachments can be binary objects.

APPROACH TAKEN:

A collection of binary objects is archived using the DB2/HPSS system, where IBM’s
DB2 database has been integrated with the HPSS archival storage system. The meta-data
is stored in columns of relational tables, while the binary objects are stored in columns of
the same table. Using the functionality provided by DB2/HPSS, data in the latter
columns are actually stored in HPSS as files.

IMPORTANT FINDINGS:

Important findings are the ability to index the archived collection on various meta-data
attributes including, file type, file size, and file name.

88

13.1 Information model

The structure of this collection further detailed in Appendix I, facilitates the organization,
archiving, indexing and access of file collections, based on file extension.

All the files in the JITC collection are in proprietary formats and are treated as binary
objects. The meta-data associated with each of these binary objects includes filename, file
size, and subject. If the filename contains a file extension, then that information is
extracted and stored as additional meta-data. The meta-data values can be used to classify
objects. Each object can be classified based on its file type attribute as well as on its file
size attribute. These are orthogonal classifications. For example, since files with
extension n#f range in size from 2Kbytes to 297Mbytes, they cover all three of the size
grouping used to categorize the collection (0-100kB, 100kB-5 MB, SMB-500MB).
Similarly, of the 268 files with extension doc, all have file size less than 56Kbytes except
one that has a size of 143Kbytes. As a result, the doc sub-collection covers two file size
groupings (0-100K and 100K-5M).

13.2 Ingestion process

Figure 13-1 shows the procedure used for archiving this collection using the DB2/HPSS
system where IBM’s DB2 database has been integrated with the HPSS archival storage
system. As shown in the figure, a table is defined for each storage classification. Files in
the original collection are encapsulated as archival objects, which contain the
corresponding meta-data, and stored in the appropriate table. While there are three
separate tables—one for each file size grouping—all tables use the same tablespace
container file in the archival storage system to store the archived object.

89

DB2/HPSS ArchivalStorage System

Figure 13-1. Storage strategy for the JITC collection

90

Performance
Information on the time taken to ingest the JITC collection into the SDSC archives is
summarized below. The total time for ingesting the 680 files (388MB) was 17 minutes.
Most of this time was for ingesting the single 297MB file in the collection. As shown in
the table below, the overall ingestion rate for this JITC sample is 380Kbytes/sec and 40
files/minute. The I/O rate was limited by use of an Ethernet to access the HPSS storage
system.

The above numbers must be interpreted carefully since (i) they represent only a single
data point, (ii) the total number and size of files in this collection is quite small to be able
to draw general inferences about performance, (iii) the ingestion experiment was run on
distributed systems at SDSC that were using their “standard” configuration, i.e. none of
the underlying systems including the operating system, network system, database system,
and archival storage system were optimized for providing the best performance for this
particular application.

of files | Size in MB Ingestion
File rates
Time Byte rate Files/min | 10,000 files
10,000 files
680 388 17 mins. 380KB/sec 40 files/min | in 10 hours

Table 13-1. Ingestion times for JITC collection

TASK OBJECTIVE

It was assumed that the heterogeneous collection of documents would be acquired from an
existing government web site. However, due to various issues involved in acquiring data out of
an active web site, and also given the fact that NARA was able to provide us this benchmark
collection, we used this particular collection rather than acquiring one from a web site. This
collection has been archived using the DB2/HPSS integrated archival system with the available
meta-data as well as the data objects stored together as a single archival object. As mentioned
earlier, it is possible to index the archived collection on various meta-data attributes including,
file type, file size, and file name.

91

14. Remaining Technical Issues

The four major components of the persistent archive process are support for ingestion,
archival storage, information discovery, and presentation of the collection. The first two
components focus on the ingestion of data into collections. The last two focus on access
to the resulting collections. The technology to support each of these processes is still
rapidly evolving. Hence consensus on standards has not been reached for many of the
infrastructure components. At the same time, many of the components are active areas of
research. To reach consensus on a feasible collection-based persistent archive, continued
research and development is needed. Examples of the many related issues are listed
below:

Ingestion

e Creation of a standard digital representation of the original (or raw) data. What
unique tags should be used to define digital objects within the original raw data?

e Techniques for automating the decomposition of a data collection into individual
digital objects. How can digital objects be defined when they must be extracted from
proprietary formats?

e Automation of the mining of attributes used to describe each data object. Can a
generic technique be developed that works for a class of data such as E-mail, or word
processing documents?

e Standard information model for characterization of the data collection organization.
This will require defining standard semantics as well as a standard for describing the
collection structure.

e Representation of unique procedures associated with each collection, including
software access tools and ingestion update tools. Can these tools be made
interoperable across multiple collections, or will unique tools be required for each
collection?

¢ Standardization of the mark-up language used to annotate the digital objects with
their associated meta-data. Extensions are being proposed to XML to associate
semantics with the tags, and define required structures within the DTD.

e Support for security within the ingestion process. What risks are incurred by use of
common infrastructure for ingesting data at different security levels?

e Validation of ingestion process. Policies for validating the correctness of an
infrastructure independent representation of a digital object are needed. The XML
approach does not capture white space.

» Workflow management policies are needed as a component of the ingestion process,
to ensure that all validation steps are completed. Can validation be done after the fact
through analysis of the collection, or should the validation be confirmed as the digital
objects are created?

e Evolution of information models. There is a need for finding aids that are robust
under evolution, and capable of locating all data collections stored within the
persistent archive.

e Collection access. Access mechanisms are needed that are capable of handling
changes to collections, such as construction of new indexes of collections, updating of

92

collections by addition of objects, updating of collections by addition of new
attributes, and updating through evolution of the DTD.
Performance optimization for incremental updates of collections, and incremental
updates of DTDs.
Administrative tools for managing collections, including compaction of collections,
updates to collections, and restructuring of collections.
Derivation of DTDs to describe complex, semi-structured and unstructured
collections.
Support for heterogeneous collections, especially multi-media, graphical and web-
based collections

Archival storage

Standardization of the archive format for storing a digital object based upon OAIS
Standardization of container formats for aggregating digital objects

Choice of digital objects to aggregate within containers for retrieval optimization
from the archive

Standardization for registration of the collection within a finding aid to guarantee the
ability to retrieve the data collection from the archive

Versioning of the information model to track changes

Support for migration of data between time dependent security levels

Information discovery

Development of generic software that is able to parse DTDs and generate appropriate
commands for creating a new database.

Support for dynamic reconstruction of the data collection through use of XML-based
database technology. Additional attributes may need to be defined to manage
evolution of a hierarchical structure.

Support for dynamic generation of a user interface to support queries against data in
XML databases.

Dynamic generation of the query language required to access XML databases.
Support for creation of queries against collections that have evolved

Access control mechanisms and standards for discovering classified information.

Presentation

Standardization of the mark-up language used to define the presentation layout (XSL
style sheets). An example is optimization of the layout of the display for user
efficiency and ease of use

Support for retrieval and presentation of meta-data used to characterize information
about the object or the associated data collection. Can standard DTDs be used to
organize meta-data for presentation?

Dynamic creation of the presentation interface for each digital object. Presentation
cannot be a function of only the collection. For heterogeneous collections, the style
of presentation must be defined for each type of object within the collection.

93

14.1 Research Opportunities

Important research areas that we suggest pursuing include:

e Security: So far we have dealt with unencumbered data ingestion. What happens
when particular data elements need to reside at certain locations or when notions
of data access control come into play?

¢ Federation: Can a persistent archive be distributed? DTD interoperability and
integration are associated topics.

e Workflow: The validation process requires the guaranteed execution of analysis
routines. Workflow management tools are needed to ensure that no processing
steps are missed.

e Complex collections: What is the correct information model when dealing with
multimedia data and GIS collections?

14.2 Research and Development Tasks

The tasks described within this paper represent initial efforts on a project funded by the
National Archives and Records Administration as an extension to the DARPA/USPTO
Distributed Object Computation Testbed (DOCT) grant F19628-96-C-0020. The projects
are described by a Research and Development Plan and Schedule, and are detailed in
Table 14-1. Progress has been made on all tasks, but as described above, there are many
research issues that still need to be explored.

Task Sections
1.A — Ingestion of million record E-mail collection 5

1.B — Ingestion of word processing collection 13

1.C — Ingestion of heterogeneous collections 6,7,8,9,10,12,13
1.D — Ingestion of Patent collection 11

II.A — Persistent storage — performance modeling 3.1,3.2
II.B — Persistent storage — technology evolution 3.1

III.A — Archiving meta-data — schema evolution 3.1

IIL.B — Archiving meta-data — ontology evolution 3.1

Table 14-1. Research Projects

The ingestion tasks were augmented to include additional collections. The goal was to
demonstrate applicability of the technology across a wide selection of collections, which
resulted in the examination of a total of nine collections. The research on persistent
storage was demonstrated primarily through the ingestion, storage, and retrieval of a
million-record E-mail collection. The research on archiving meta-data was implemented
in the MCAT system meta-data management software. This required identifying the
meta-schema attributes that are needed to manage a schema, and implementing software
that can use the meta-schema attributes to instantiate a collection. The ontology evolution
task has multiple components, related to provision of multiple views into a data

94

collection, and support for evolution of the information model used to describe
collections. Both areas continue to be important research areas.

14.3 Summary

Multiple communities across academia, the federal government, and standards groups are
exploring strategies for managing very large archives. The persistent archive community
needs to maintain interactions with these communities to track development of new
strategies for data management and storage. The technology proposed by SDSC for
implementing persistent archives builds upon interactions with many of these groups.
Explicit interactions include publications with Federal planning groups [21], the
Computational Grid [22], the digital library community [23], and individual federal
agencies [24]. '

The proposed persistent archive infrastructure combines elements from supercomputer
centers, digital libraries, and distributed computing environments. The synergy that is
achieved can be traced to identification of the unique capabilities that each environment
provides, and the construction of interoperability mechanisms for integrating the
environments. The result is a system that allows the upgrade of the individual
components, with the ability to scale the capabilities of the system by adding resources.
By differentiating between the storage of the information content and the storage of the
bits that comprise the digital objects, it is possible to create an infrastructure independent
representation for data organized by collections. Collection-based persistent archives are
now feasible that can manage the massive amounts of information that confront
government agencies.

Acknowledgements:

The data management technology has been developed through multiple federally
sponsored projects, including the DARPA project F19628-95-C-0194 “Massive Data
Analysis Systems,” the DARPA/USPTO project F19628-96-C-0020 “Distributed Object
Computation Testbed,” the Data Intensive Computing thrust area of the NSF project ASC
96-19020 “National Partnership for Advanced Computational Infrastructure,” the NASA
Information Power Grid project, and the DOE ASCI/ASAP project “Data Visualization
Corridor.” Additional projects related to the NSF Digital Library Initiative Phase II, the
California Digital Library at the University of California, and NSF Digital Government
are just starting, and will also support the development of information management
technology. This work was supported by a NARA extension to the DARPA/USPTO
Distributed Object Computation Testbed, project F19628-96-C-0020. Michael Wan led
the research and development of the Storage Resource Broker. Wayne Schroeder led the
research and development of the security infrastructure. The XMAS research and
development was led by Yannis Papakonstantinou of the University of California, San
Diego. '

95

References

1.

kW

10.
11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.

22.

Rajasekar, A., Marciano, R., Moore, R., “Collection Based Persistent Archives,”
Proceedings of the 16" IEEE Symposium on Mass Storage Systems, March 1999.
Extensible Markup Language, http://www.w3.org/XML

The High Performance Storage System (HPSS), http://www.sdsc.edu/HPSS/.

Transaction Processing Council, http://www.tpc.org/results/tpc_d.results.page.html

Baru C., Moore, R., Rajasekar, A., and Wan, M., “The SDSC Storage Resource
Broker,” Proceedings of CASCON’98 Conference, Nov. 30-Dec. 3, 1998, Toronto,
Canada.

Baru C., Frost, R., Marciano, R., Moore, R., Rajasekar, A., and Wan, M., “Meta-data
to support information based computing environments,” Proceedings of the IEEE
Conference on Meta-data, Silver Spring, MD, Sept. 1997.

MCAT - A Meta Information Catalog (V1.1), Technical report:
http://www.npaci.eduw/DICE/SRB/mcat.html

. Data Definition Language standardized syntax, ANSI X3.135-1992 (R1998)

Data-Intensive Computing Environment reports, URL http://www.npaci.edu/DICE/.
The DB2/HPSS Integration project, http://www.sdsc.edu/MDAS.

IEEE Storage System Standards Working Group (SSSWG) Project 1244, “Reference
Model for Open Storage Systems Interconnection, Mass Storage Reference Model
Version 5,” Sept. 1994. '
Moore, R., Lopez, J., Lofton, C., Schroeder, W., Kremenek, G., Gleicher, M,,
“Configuring and Tuning Archival Storage Systems,” Proceedings of the 16" IEEE
Symposium on Mass Storage Systems, March 1999.

Schroeder W., “The SDSC Encryption / Authentication (SEA) System,” Distributed
Object Computation Testbed (DOCT) project white paper,
http://www.sdsc.edu/~schroede/sea.html.

Schroeder W., “The SDSC Encryption and Authentication (SEA) System,” Special
Issue of Concurrency: Practice and Experience—Aspects of Seamless Computing,
John Wiley & Sons Ltd., 1999.

Baru C., and Rajasekar, A., “A Hierarchical Access Control Scheme for Digital
Libraries,” Proceedings of the 3rd ACM Conference on Digital Libraries, Pittsburgh,
PA, June 23-25, 1998.

The Dublin Core, http://www.ukoln.ac.uk/meta-data/resources/dc.html.

The Warwick Framework, Carl Lagoze, D-Lib Magazine, July/August 1996,
http://www.dlib.org/dlib/july96/lagoze/o7lagoze.html

Tomer, C., “Information Technology Standards for Libraries,” Journal of the
American Society for Information Science. 43: 566-570, 1992.

Light-Weight Directory Access Protocol (LDAP) implementation by Netscape,
http://www.netscape.com/comprod/server_central/-product/directory/index.html
Schroeder, W., Marciano, R., “Workload characterization of HPSS,” Proceedings of
the 16™ IEEE Symposium on Mass Storage Systems, March 1999.

Moore, R., “Enabling petabyte computing, The Unpredictable Certainty, Information
Infrastructure through 2000,” National Academy Press, 1997.

Foster, 1., Kesselman, C., “The Grid: Blueprint for a New Computing Infrastructure,”
Chapter 5, “Data-intensive Computing,” Morgan Kaufmann, San Francisco, 1999.

97

23. Baru C. “Archiving Meta-data,” 2nd European Conference on Research and
Advanced Technology for Digital Libraries (poster), Sept.19-23, 1998, Crete, Greece.
24. Baru, C,, et al., “A data handling architecture for a prototype federal application,”
Proceedings of the IEEE Conference on Mass Storage Systems, College Park, MD,
March 1998.

98

APPENDIX A: E-mail Postings

PHYSICAL SOURCE:

A live newsgroup feed from SDSC’s Newsgroup Server was tapped to generate the 1
million E-mail message collection. Rather than accessing data from a newsgroup archive,
this approach was preferred in order to learn the issues involved with the archiving of
"live" data feeds.

Four principal newsgroup categories were selected: comp, humanities, sci, soc, as they
contain, respectively, computer messages, humanities messages, general science
messages, and social science messages. Each category was monitored for multiple
newsgroups, with messages archived from 1,170 separate newsgroups.

Comp 733
Humanities 7
Sci 184
Soc 246

1,170

Table A-1: Total newsgroup count monitored

The collecting of 1 million Newsgroup messages into a file called collection.raw was
completed on January 16, 1999, in 3 /2 weeks. Typically 3 days worth of accumulated
live feed for these 4 categories of newsgroups (1,170 individual groups) can be
assembled in I %2 hours.

Incidentally, this represents less than 4% of all the newsgroups received at SDSC and
less than 9% of all the messages stored at a given point in time (total live feed stats: /
million records on disk and 30,754 newsgroups subscribed to). Table A-2 lists the
number of messages received for each newsgroup category, the total size, the percentage
of the collection that came from the category, the number of messages received per week,
and the average message size. The total collection size was 2.5 GB of raw data.

Num. Total Size | Perc. Groups | Examples Num/ Msg.
Week Size
Comp 533,956 1.13 GB 54.0% | 733 comp.ai.fuzzy 144,000 | 2.2
comp.benchmark KB
comp.databases.oracle.tools
Humanities { 4,510 13.4 MB 0.5% 7 humanities.languages.sanskrit | 1,200 3.0
humanities.lit.authors KB
Sci 113,428 285.0MB | 11.5% | 184 sci.space.shuttle A 31,000 123
sci.physics.plasma KB
sci.fractals
Soc 348,106 1.1GB 34.0% | 246 soc.genealogy.sumames.usa | 94,000 | 3.3
soc.history.war.vietnam KB
1,000,000 | 2.52GB 100% {1,170 281,000 | 2.7

99

| | [xB]

Table A-2. Newsgroup E-mail statistics

It appears that “humanities” and “social science” messages are on the average a little
longer (3.1 & 3.2 KB), which could indicate that scientists and engineers are a little more
terse! ©

Individual message objects follow the Network Working Group RFC-1036
(http://http.bsd.uchicago.edu/~twpierce/news/rfc1036.html) standard, a standard for
Interchange of Usenet Messages. A standard USENET message consists of several
header lines, followed by a blank line, followed by the body of the message.

Certain headers are reguired, and certain headers are optional. Any unrecognized headers
are allowed, and will be passed through unchanged. Each header line consists of a
keyword, a colon, a blank, and some additional information. The Internet convention of
continuation header lines (beginning with a blank or tab) is allowed.

Table A-3 gives a field count tally over the 1 million record collection we assembled. The
results are in accordance with RFC1036, where there are 6 required fields, 13 optional
fields, and a variable number of unrecognized headers (we call this last category: other).
Note that 1,347 user-defined headers were present in the collection. All Usenet messages
had all of the required fields.

Required Optional Other
From: Followup-To: X-spam-hater:
Date: Expires: - X-WebTV-Signature
Newsgroups: Reply-To: X-Christmas:
Subject: Sender: X-Coffee
Message-ID: References: Return-Path:
Path: Control: Status:
Distribution: Originator:
Keywords: Abuse-Reports-To:
Summary: X-truth:
Approved: Resent-To:
Lines: X-A-Notice:
Xref: X-No-Hope:
Organization: X-001:
Battlestar-Galactica-Date:
Etc...
Counts {6 13 Variable Count: 1,347

Table A-3. Summary of fields in the Usenet E-mail messages

100

APPENDIX B: TIGER/Line’92 additional information

PHYSICAL SOURCE:

The data is packaged as 44 CDs with up to 600 MB / CD (Total size: 26 GB). The Tiger
collection is by far the most intricate in terms of data organization and associated meta-
data.

The rest of this section is devoted to providing an in-depth view of the
TIGER/Line data model.

Topological Model

The Census TIGER database represents a seamless national file with no overlaps or gaps
between parts. However, each county-based TIGER/Line file is designed to stand alone
as an independent data set or the files can be combined to cover the whole Nation and its
territories. The data collection represent the topological information associated with the
Census data, and is organized as points (nodes) / lines (chains of points) / closed
polygons.

The 1992 TIGER/Line files consist of line segments representing physical features and
governmental and statistical boundaries. The files contain information distributed over a
series of record types for the spatial objects of a county. There are 14 record types,
including the basic data record, the shape coordinate points, and geographic codes that
can be used with appropriate software to prepare maps. Other geographic information
contained in the files includes attributes such as feature identifiers/census feature class
codes (CFCC) used to differentiate feature types, address ranges and ZIP Codes, codes
for legal and statistical entities, latitude/longitude coordinates of linear and point features,
landmark point features, area landmarks, key geographic features, and area boundaries.
The 1992 TIGER/Line data dictionary contains a complete list of all the fields in the 14
record types.

CD-ROM Structure

A typical CD-ROM containing information for sake of example, for 2 states, will have
the following directory and file structure, shown in Table B-1.

/Tools

/Software

/Document

Readme

/STATE]#
FCOUNTYT#

101

SCOUNTYn#
/STATE2#
SCOUNTYL#

SCOUNTYn#

Table B-1. Example of CD-ROM format for Tiger/Line data

There are up to 14 separate files for each county directory:
IST/ICTY :
where: ST = [FIPS State Code]
CTY = [FIPS County Code]

The following CD-ROM snapshot shows portions of Texas (FIPS code: 48) and
Oklahoma (FIPS code: 40):

/Tools
¥ilename Description

dBASE file structures for 14 TIGER/Line record types.
The TIGER/Line files are found in the county
directory within the state directory, where:

?=(1. 'slalflgIIIplr) .

: single record for each unique complete chain
series of lat/long values

range and ZIP code data

QO ~J OV U s G) b

area landma
additional polygon geographic entity codes
corrected geog. Entity codes for the 90 Census
1992 gecgraphic codes & entity changes

the link be en complete chains and polyvgons
polygon internal point

record number range

B -0 rh

dBASE file structure for the School District

Names file, found in the state directory {with the

State’'s FIPS code as the directory name.)

dBASE file structure for the geographic reference

. NAM file found in the state directory.

Y. DBE dBASE file with the record type codes and

descriptions for file TGR92NAM.DBF.
/40

Il

;

“ 7
/{/

>

7

oo

102

Tgrd 0001
Tgrd0001.£52

Tord 0001,
Tard 0001
ord 0001 ¢
Pard 0001, £

Togrd 0001
Tgrd 0001 . £f

/48

/491

Tar48497
Tard849i.£52
Tyrd&491. F

Togrd8491.
Tgrd8491. £2
Tgrd8491. £5
Togrd8491.
Tord8497.
Toréd8491.

SAscld
SGraphics
SHac

SV

Landview. doc

103

/Software

Landview, exe (& related files: install.exe, etc.)

Table B-2. County data format for Tiger/Line

For 1992, there are 3,428 county data sets. These constitute the fundamental digital
objects stored within the collection. Each digital object is well-defined in the collection,
with the data for each county is stored in 14 files.

Files contain three major types of data:

Line features:
e roads
e railroads
e hydrography
e misc. transportation features & selected power lines & pipe lines
e boundaries
Landmark
e point: schools, churches
e area: parks, cemeteries
Polygon
e geographic entity codes locations of area landmarks

The following 20 pages describe the data in greater detail:

e 6 pages/ figures give a pictorial view of the structure of Tiger files:

Figure 1-1: gives the Basic TIGER/Line File Topology

Figure 1-2: gives the TIGER/Line File Record Linkages

Figure 3-1: shows the TIGER/Line Address Range Basics

Figure 4-1: shows the Hierarchical Relationships of Geographic Entities

in the TIGER/Line Files

e Figure 4-2: shows Geographic Relationships for Small Area Statistical
Entities

e Additional Figure: shows Geographic Relationships for Legal &

Statistical Entities.

e 14 pages/ sections provide a detailed data dictionary that describes each of
the 14 associated county file components: 1,2,3,4,5,6,7,8,a,f,g,Lp.r.

104

Figure 1-1
Basic TIGER/Line™ File Topology

The illustration below shows a generalzed blockthat consists of 3 GT-polgons (GT stands for geometny and
topology). The block contains a point landrmark (Parkside School) and an area landmark {Friendship Park) that
is coextensive with GT-polgon 3.

Enfify PointiPoint Landmark
location {entify points are independent of B
the GT-polgon complete chain topolegy).

R
i

o

} 4

i& Schoo!

GT-POLYGON 2
GT-Pekrgen 2 imarior paint

5

“Shape Point 1

—_—

=

2

20

s

Complefe cha
points.

The end node belongs to only one
complete chain. This complete chain
does not form a polygon boundary.

Actual Street Curb Location

TIGER/Line™ Node: A zero-dimensional object that incorporates topology and geometry.
Each marks the intersection or end poirt of 2 complefe chain.

TIGER/Line™ Shape Point: A zero-dimensional object that defines the curvature of a
complete chain, but is not required to describe the topology of the complete chain funlike
the intersections and end points).

TIGER/Line™ Peint Landmark: An entify poinf that idertifies the location of a point
landrnark, in this case the Parkside School.

-$- TIGER/Line™ Polygon Interior Poirts: An area poinf associated with a polygon in the
TIGERLine™ file.

Corplete Chain: A one-dimensional object having topolgical and geometric characteristics.

105 -

UNSIBA SNEUBIN J BUL Wy sadi oss peubuD sy e g yBnoayy | Sdij pIosey SdA IDOEI BIR UIRKUOS G Bi g BT YT DL 34N O UCHSIBN ST YL SSNPUL Sa e

T FWVMIONL SRSNE) 255 B wRUPYABIL Y10
UDISEA WRIND 51 Haze o {0INE O ik SNED 0ES WL IBSHAIIL
waybiyey pre 0114 BKssod wnwike puE Wnmum sy 1o fugsie

SRIO0E JBLO B T4 PEHUL ARDRIIPICU 91 Y Bdfi| ooy d 3dAL OHOSEYH

QG Ty SSID g Fuon (PEpRRUSE ¥ 1 O N

O N TATENL ' SHELPUL) e pue et 40 uogdy osap {9 i O Hur 0 (AONV) 23dAL OHOQ3Y
{dusuorem Ausu-a-Aued *
DEGE B SSNIT FIHSIT BUNOA PR WSUTUTEN L (Pepasl 58 d 14 O uae) a1 ssaigay pewpuet = QN

‘irewpUE) S o uoBARE HUN OF (] SIS AEUpLE] {d L o U o) (AN LAIATOY (QINAD) ey 8 Td kL QHOD3Y

B SWVHIDILLZSGE ‘DI SUNMILIL IPEEDOU 5€ d L0 O yaem)

SNSWBL0ES | WU JUSISILID SBUM “SRR00 LS ondelfosb wmim (d 4 @ o) WIOdNIAINGY) =afinl 5 3441 09003 {monr)
B PWVUIDILZEEE
Oy pue § sl IO 'SeN SUPRDIL SHSURD CES {popest 5e d 14 o uxa)
DU WO LRI SEUM S000 S oigleiBosh ORSE PRIRICO {44 08 U o (IO AINGD) weafidd 4 3dAL QHODIY {mou)

DE R R
[P E-"E 1L FECT)
o Ausu
DI Gt SHPOT PINISKT TUPIA ey Al ' R1) soussa uwobApd

AR D2 uobiiad yes unuod reuR W Ue 10 AeuIpIoD WhH pu s ' A aoiun Rea)

SR SATUZER L SHENED 065 EIBYD PUe WUISID DOWS 'S4}

AydeBosh 0551 PEGOBLIDIUN ICL 55E00 AN ot fosb wiknd (A0 TANTT) =] VIAdAL QHOOHEY

(ANOITAINID) affed 4 TAL AHOATY

*

G5 BN SEDAD i IBFUT BUPOA IARE W SUTMHTINL
S008I [eyeR WobAnd o £) sowmER) WEACd UGy pue yE

sobUEl S3R1pPE feDIfpe

14 pue | 139 TTY O uaes
{d PUe 1 1 O U OEIG)

{popEEU e | L o YNEM)
(R T PR)

{digsunyer Fueusa 210 Xl
BN b Ld O Ul

SIDLRUED DITVERL Uy duD?2 e) st

SOAMEU DI LIRYD ABIDN00 [2UDKIPER IO SSOURIBEN)] Auey

o100 Ay andel ios5 snewss 0Es) subu pue yal
{24 sope A4u 0e5) UBY pue)
ssRpco e owdel Bueb g ppe

sEpeumions Jud schays alrgan ey asiuco

1) 53p00 Anus onptesBosl oes suby pue yan
SPRUPIDCO BPCU PiE
smfive) S0Py
1SBPOG LD TR STAMEU RANED
uondl 2E5E B VERY U BBEICN SFed

(papeBUSe | 1d O Yves)
b O U 30%0)

(b ok 1Y @ yaey)
b 1 O AU 3030}

(papeau 52 § LY o Uoyery)
(L 0 U sei)

i soumiBEY unldod = {{qj vobiad){al =y}
HHAIATOL) {HAIND OB ETAIO) TITINT OF (0171 L) s

(AL} m—

(1¥34) S3dAL OHOO3Y

Q| sauvragas surey {(gL ﬁw,;_ﬁﬁﬁtf VAT (ALY

(ML i
(01TL i

1BQUIRK UOREANUBH puBUIT U L (L) e

sefexury p10oooy S wPUIHIDLL

&1 2angryg

13dAL GHOI3Y

S 3dAL QHOITY

¥ 3AdAL 04023y

€3dAl Y023 Y
Z 3d4AL Q40034

F3dAL 040Q3Y

106

Figure 8-1
TIGER/Line™ Address Range Basics
The TIGER/Line™ files ¢ ontain potential address ranges for city-style addresses. The complete

chain below has two address ranges; the lett side has an odd-number parity and the right side
has a complimentary even-number parity.

The ACF from the 1990 census identifies a new ackress
rrnge that extend the address coverage for the left side
of the completechain. The new address range appears
withan ACF source flag.

End Nodle

Rl

o

Therange 100 to 118 is a simple city-style mnge
froma pre-1990 census source.

Record Type 1 contains separate data fields for the start and end of each address range. Note that
an impute flag with a value of "2" or “3" indic ates that the address range is from the AGF source.

R Address Range Impute Flags
TIGER/Line™ Record Types Left side Right Side Leftside Right Side
Sart End . St End Start Ed ___Ser End
Record Type 1
RT TLID... FEMAME FETYPE. . FRADDL 'rmmr, FRAIDR TOADDR FRLADDFL '.BDIA.D FRIADDFR TOTADDFR
1... 0007654320... Qak Ave.. . 100 118 ; [0

107

Figure 4-

1

Hierarchical Relationships of Geographic
Entities in the TIGER/Line Files

Nation

States
I UA's
Counties
CD's / Places AVFANA's ANRC's
$chool Districts VTD's County Subdivsions
|
Sub-MCD's*
Census Tracts/BNA's

* Sub-MCD's appear only in Puerlo Rico and the
Fecierated States of Micronesia {not available in the
TIGER/Line Files, 1992 Version).

BG's

Blocks

108

Figure 42
Geographic Relationships -- Small Area Statistical Entities

County

Key

-—m--me-we-m County Boundary

% Census TractBNA Boundary
+-8—9—9% Place Bourdary

,! Census Tract or BNA

Census tract crosses a place boundary.
See Figure 4-3 for the place geography.

Letter suffixes after the block numbers identify
tabulation blocks created by the place boundary.

e B
——
-

Glenn Ridge Rd.)

%
301

Main

Geographic Relationships -- Legal and Statistical Entities

Greene County

Key

County Boundary

Census Tract/BNA Boundary
Place Boundary

Courty Subdivision
Boundary

CCDh 2

Note: Warsaw City is a Place » /
inside CCD 6, which covers g
the city and the surrounding
area. /
/ 4 3
< -
- e ~ ~ J Census tract crosses the place boundary.
~
»| Glenn Ricdge Rd. 4 Letter suffixes after the block humbers identify
g E & /7 tabulation blocks created by the place boundary.
- & 301 /
- c /
%l EmSt s s BIOCk
© Erie St

110

The following pages detail the structure of each of the 14 files (1, .., 8, a, f, g, I, p,).

1992 TIGER/Line Files
Data Dictionary

S

Record Type 1 -- Basic Data Record for Complete Chains

Field Type Fmt Beg End Size BV Description and Notes
RT L A 1 1 1 N Record Type (Record Type is “17)
VERSION L N 2 5 4 N Version Number
(value “0005” identifies
the 1992 TIGER/Line files)
TLID R N 6 15 10 N TIGER/Line™ Record ID Number
(Permanent complete chain
identification number)
1SIDE R N 16 16 1 Y Single-Side Segment Code
(Value “1” gignifies data
only exists for one side of
the complete chain)

SOURCE L A 17 17 1 Y Source Code

FEDIRP L A 18 19 2 Y Feature Direction, Prefix

FENAME L A 20 49 30 Y Feature Name

FETYPE L A 50 53 4 Y Feature Type

FEDIRS L A 54 55 2 Y Feature Direction, Suffix

CFCC L A 56 58 3 Y CFCC

FRADDL R A 59 69 11 Y Start Address, Left Side

TOADDL R A 70 80 11 Y End Address, Left Side

FRADDR R A 81 91 11 Y Start Address, Right Side

TOADDR R A 92 102 11 Y End Address, Right Side

FRIADDL R N 103 103 1 Y Start Address, Impute Flag
Left Side

TOIADDL R N 104 104 1 Y End Address, Impute Flag
Left Side

FRIADDR R N 105 105 1 Y Start Address, Impute Flag
Right Side

TOIADDR R N 106 106 1 Y End Address, Impute Flag
Right Side

ZIPL L N 107 111 5 Y ZIP Code®, Left Side

(A non-blank value appears
only when left address
range is present)

ZIPR L N 112 116 5 Y ZIP Code®, Right Side
(A non-blank value appears
only when right address
range present)

FAIRL L N 117 121 5 Y AI/ANA FIPS PUB 55-3 Code,
Left Side

FAIRR L N 122 126 5 Y AI/ANA FIPS PUB 55-3 Code,
Right Side

ANRCL L N 127 128 2 Y ANRC, Census Code, Left
side

ANRCR L N 129 130 2 Y ANRC Census Code, Right
Side,

STATEL L N 131 132 2 Y FIPS State Code, Left Side

111

STATER L N 133 134 2 Y FIPS State Code, Right Side
COUNTYL L N 135 137 3 Y FIPS County Code, Left Side
COUNTYR L N 138 140 3 Y FIPS County Code, Right
Side
FMCDL L N 141 145 5 Y County Subdivision FIPS PUB
55-3 Code, Left Side
FMCDR L N 146 150 5 Y County Subdivision FIPS PUB

55-3 Code, Right Side
FSMCDL L N 151 155 5 Y Sub-MCD FIPS PUB 55-3 Code,

Left Side
FSMCDR L N 156 160 5 Y Sub-MCD FIPS PUB 55-3 Code,
Right Side
FPLL L N 161 165 5 Y Place FIPS PUB 55-3 Code,
Left Side
FPLR L N 166 170 5 Y Place FIPS PUB 55-3 Code,
Right Side
CTBNAL L N 171 176 6 Y Census Tract/BNA Code, Left Side
L N 171 174 4 Y Basic number
L N 175 176 2 Y suffix
CTBNAR L N 177 182 6 Y Census Tract/BNA Code, Right
Sside
L N 177 180 4 Y Basic number
L N 181 182 2 Y suffix
BLKL L A 183 186 4 Y Block Number, Left Side
L N 183 185 3 Y Basic number
L A 186 186 1 Y suffix
BLKR L A 187 190 4 Y Block Number, Right Side
L N 187 189 3 Y Basic number
L A 190 190 1 Y suffix
FRLONG R N 191 200 10 N Start Node Longitude (Implied 6
decimal places)
FRLAT R N 201 209 9 N Start Node Latitude
(Implied 6 decimal places)
TOLONG R N 210 219 10 N End Node Longitude (Implied 6 decimal
places)
TOLAT R N 220 228 9 N End Node Latitude
(Implied 6 decimal places)
Type:

L = Left-Justified (numeric fields have leading zeros and may be interpreted as character data)

R = Right-justified (numeric fields do not have leading zeros, and may be interpreted as
integer data)

Fmt:

A = Alphanumeric
N = Numeric

BvV:

Y =Blank value is valid
N = Blank value is not valid

112

Record Type 2 -- Shape Point Coordinates

Field Type Fmt Beg End Size BV
RT L A 1 1 1 N
VERSION L N 2 5 4 N

TLID R N 6 15 10 N
RTSQ R N 16 18 3 N
LONG1 R N 19 28 10 N
LAT1 R N 29 37 9 N
LONG2 R N 38 47 10 Y
LAT2 R N 48 56 9 Y
LONG3 R N 57 66 10 Y
LAT3 R N 67 75 9 Y
LONG4 R N 76 85 10 Y
LAT4 R N 86 94 9 Y
LONG5 R N 95 104 10 Y
LATS5 R N 105 113 9 Y
LONG6 R N 114 123 10 Y
LAT6 R N 124 132 9 Y
LONG7 R N 133 142 10 Y
LAT7 R N 143 151 9 Y
LONGS8 R N 152 161 10 Y
LATS R N 162 170 9 Y
LONG9 R N 171 180 10 Y
LATS R N 181 189 9 Y
LONG10 R N 190 199 10 Y
LAT10 R N 200 208 9 Y

Description and Notes
Record Type (Record Type is “27)

Version

(Vvalue “0005” identifies

the 1992

TIGER/Line files)

TIGER/Line™ Record ID Number
(Permanent complete chain
identification number)

Record Sequence Number (Sequentially

numbered
Point 1,
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point
Point

9,

from 1 for each TLID)
Longitude
Latitude
Longitude
Latitude
Longitude
Latitude
Longitude
Latitude
Longitude
Latitude
Longitude
Latitude
Longitude
Latitude
Longitude
Latitude
Longitude
Latitude

10, Longitude
10, Latitude

Note: The TIGER/Line™ files contain a maximum of 10 shape points on one record.
The number of shape point records for a complete chain may be 0, 1, or more.
Coordinates have an implied 6 decimal places.

113

R R

Record Type 3 -- Additional 1990 and 1980 Decennial Census Geographic Entity

Codes

Field Type Fmt Beg End Size BV

RT
VERSION

TLID

STATESOL
STATES8OR
COUNS8OL
COUNSOR

FMCD8OL

FMCD80R

FPL8OL
FPL8OR

CTBNASOL

CTBNASOR

BLK8OL
BLK8OR
MCD8O0L
MCD8OR
PL8OL
PL8OR
AIRL
AIRR

MCDL

L
L

[l])

[)

A
N

222

Z2Z

1
2

16
18
20
23

26
31

36
41
46
46
50
52
52
56
58
61
64
67
70
74
78
82

86

1
5

15

17

19

22

25

30

35

40
45
51
49
51
57
55
57
60
63
66
69
73
77
81
85

88

1
4

10

AN >

N

N
N

oK

L]

Description and Notes

Record Type (Record Type is “3”7)

Version Number

(value “0005” identifies

the 1992 TIGER/Line files)

TIGER/Line™ Record ID Number
(Permanent complete chain
identification number)

1980 FIPS State Code, Left

Side

1980 FIPS State Code, Right
Side

1980 FIPS County Code, Left
Side

1980 FIPS County Code,
Right Side

County Subdivision, 1980
FIPS PUB 55-3 Code, Left
Side

County Subdivision, 1980
FIPS PUB 55-3 Code, Right
Side

Place, 1980 FIPS PUB 55-3
Code, Left Side

Place, 1980 FIPS PUB 55-3
Code, Right Side

1980 Census Tract/BNA Code,
Left Side

Basic number

suffix

1980 Census Tract/BNA Code,
Right Side

Basic number

suffix

1980 Block Number, Left
Side

1980 Block Number, Right
Side

County Subdivision, 1980
Census Code, Left Side
County Subdivision, 1980
Census Code, Right Side
Place, 1980 Census Code,
Left Side

Place, 1980 Census Code,
Right Side

AI/ANA Census Code, Left
Side

AI/ANA Census Code, Right
Side

County Subdivision Census

114

A P O et o e

MCDR

SMCDL
SMCDR
PLL
PLR
VIDL
VTDR

[o o A

[

o222z

92
94
96
100
104
108

89

93
95
99
103
107
111

91

DN

w

HKKKKK

Code, Left Side
Y County Subdivision Census
Code, Right side
Sub-MCD Census Code, Left Side
Sub-MCD Census Code, Right Side
Place, Census Code, Left Side
Place, Census Code, Right Side
1990 VTD Code, Left Side
1990 VTD Code, Right Side

115

e A e R OO Sy

Record Type 4 -- Index to Alternate Feature Identifiers

Field Type Fmt Beg End Size BV
RT L A 1 1 1 N
VERSION L N 2 5 4 N
TLID R N 6 15 10 N
RPTSQ @ R N 16 18 3 N
FEAT1 R N 19 26 8 N
FEAT2 R N 27 34 8 Y
FEAT3 R N 35 42 8 Y
FEAT4 R N 43 50 8 b 4
FEATS R N 51 58 8 Y

Description and Notes
Record Type (Record Type is “4”)
Version (Value “0005” identifies
the 1992 TIGER/Line files)
TIGER/Line™ Record ID Number
(Permanent complete chain
identification numbers)
Record Sequence Number
(Sequentially numbered from

1 for each TLID/Complete Chain)
Identification Number for

1% Alternate Feature Identifier
Identification Number for

2™ Alternate Feature Identifier
Identification Number for
3™ Alternate Feature Identifier
Identification Number for
4 Alternate Feature Identifier
Identification Number for

5*2 Alternate Feature Identifier

Record Type 5 -- Feature Identifier List

Field Type Fmt Beg End Size BV
RT L A 1 1 1 N
STATE L N 2 3 2 N
COUNTY L N 4 6 3 N
FEAT R N 7 14 8 N
FEDIRP L A 15 16 2 Y
FENAME L A 17 46 30 Y
FETYPE L A 47 50 4 Y
FEDIRS L A 51 52 2 Y

Description and Notes

Record Type (Record Type is “57)
FIPS State Code

FIPS County Code

Identification Number for

the Feature Identifier

Feature Direction, Prefix
Feature Name

Feature Type

Feature Direction, Suffix

116

B e

Record Type 6 -- Additional Address Range and ZIP Code ®Data

Field
RT
VERSION

TLID

RTSQ

FRADDL
TOADDL
FRADDR
TOADDR
FRIADDL
TOIADDL
FRIADDR

TOIADDR
ZIPL

ZIPR

L
L

WKW

[

A
N

Z2222pppy 2

2z

1
2

16

19
30
41
52
63
64
65

66
67

72

1
5

15

18

29
40
51
62
63
64
65

66
71

76

1
4

10

11
11
11
11

Type Fmt Beg End Size BV

N
N

KKK KKK KK

KK

Description and Notes

Record Type (Record Type is 67)

Version

(Value “0005” identifies

the 1992 TIGER/Line files)

TIGER/Line™ Record ID Number
(Permanent complete chain
identification numbers)

Record Sequence Number
(Sequentially numbered from

1 for each TLID)

Start Address, Left Side

End Address, Left Side

Start Address,Right Side

End Address, Right Side

Start Address, Impute Flag, Left Side

End Address, Impute Flag, Left Side
Start Address, Impute Flag,

Right Side

End Address, Impute Flag, Right Side
ZIP Code®, Left Side

(A non-blank value appears

only when left address

range is present)

ZIP Code®, Right Side

(A non-blank value appears

only when left address

range is present))

117

Record Type 7 -- Landmark Features

Field
RT
VERSION

STATE
COUNTY
LAND
SOURCE
CFCC
LANAME
LALONG

LALAT

FILLER

SRR

o o

N ol ol ol A

A
N

Z2ppdP22z2

2

b

1
2

6

8
11
21
22
25
55

65

74

1
5

7
10
20
21
24
54
64

73

74

1
4

2
3
10
1
3
30
10

Type Fmt Beg End Size BV

N
N

HKKKZZ22

L

e

Description and Notes

Record Type (Record Type is “7”7)
Version (Value “0005” identifies
the 1992 TIGER/Line files)

FIPS State Code

FIPS County Code

Landmark Identification Number
Source Code

CFCC

Landmark Feature Identifier
Longitude (Implied 6 decimal places,
only for point landmarks)

Latitude (Implied 6 decimal places,
only for point landmarks)

Filler (to make even character count)
(contains a blank character space)

Record Type 8 -- Polygons Linked to Area Landmarks

Field
RT
VERSION

STATE
COUNTY
CENID
POLYID

LAND
FILLER

E Rl o) | 2

0w

A
N

2222

2

1
2

6
8
11
16

26
36

1
5

7
10
15
25

35
36

1
4

Type Fmt Beg End Size BV

N
N

2222

<2

Description and Notes

Record Type (Record Type is “87)
Version (Value “0005” identifies
the 1992 TIGER/Line files)

FIPS State Code

FIPS County Code

Census File Identification Code
Polygon Identification Number
(Polygon number is unique to CENID)
Landmark Identification Number
Filler (to make even character count)
(contains a blank character space)

118

Record Type A—Additional Polygon Geographic Entity Codes

Field
RT
VERSION

STATE
COUNTY
CENID
POLYID

FAIR
FMCD
FPL
CTBNA

BLK

CD101
CD103
SDELM
SDMID
SDSEC
SDUNI
TAZ

UA
URBFLAG
RS

L
L

L o

B 0 o ol ol o N o i o o o L L

A
N

2222

P2 EEAPRAPRI22222

1
2

6
8
11
16

26
31
36
41
41
45
47
47
50
51
53
55
60
65
70
75
81
85
86

1
5

7
10
15
25

30
35
40
46
44
46
50
49
50
52
54
59
64
69
74
80
84
85
98

1
4

outwhN

Y

WKRrPadOAUVUOUUDMDNMNRWENDNBROOUGWU

=

Type Fmt Beg End Size BV

N
N

2222

KKK K22 K22 KEK

Description and Notes

Record Type (Record Type is “A”)
Version (Value “0005” identifies
the 1992 TIGER/Line files)

FIPS State Code

FIPS County Code

Census File Identification Code
Polygon Identification number
(number is unique to CENID)
AI/ANA FIPS PUB 55-3 Code

County Subdivision FIPS PUB 55-~3 Code
Place FIPS PUB 55-3 Code

Census Tract/BNA Code

Bagic number

suffix

Block Number

Basic number

suffix

101** Congressional District Code
103" Congressional District Code
Elementary School District Code
Middle School District Code
Secondary School District Code
Unified School District Code

TAZ Code

Census UA Code

U/R Flag

Reserved Space (The field is
reserved, but currently contains a
blank character space)

119

Record Type F—Corrected Geographic Area Codes for the 1990 Census*

Field Type Fmt Beg End Size BV

RT L A 1 1 1 N
VERSION L N 2 5 4 N
STATE L N 6 7 2 N
COUNTY L N 8 10 3 N
CENID L N 11 15 5 N
POLYID R N 16 25 10 N
STATES0 L N 26 27 2 N
COUNTYS0 L N 28 30 3 N
FAIR90 L N 31 35 5 Y
FMCD90 L N 36 40 5 Y
FSMCD90 L N 41 45 5 Y
FPL90 L N 46 50 5 Y
CTBNA9O L N 51 56 6 Y

L N 51 54 4 Y

L N 55 56 2 Y
BLK90 L A 57 61 5 Y

L N 57 58 3 Y

L A 60 60 1 Y

L A 61 61 1 Y
FILLER L A 62 62 1 Y

Description and Notes

Record Type (Record Type is “F”)
Version (Value “0005” identifies the
1992 TIGER/Line files)

FIPS State Code

FIPS County Code

Census File Identification Code
Polygon Identification Number
(number is unique to CENID)

1990 FIPS State Code

1990 FIPS County Code

1990 AI/ANA FIPS PUB 55-~3 Code

1990 County Subdivision FIPS PUB 55-3
Code)

1990 Sub-MCD FIPS PUB 55-3 Code

1990 Place FIPS PUB 55-3 Code

1990 Census Tract/BNA Code

Basic number

suffix

1990 Block Number

Basic number

2 character suffix

Collection Suffix

Filler (to make even character count)
(contains a blank character space)

*Present only when different from Record Type 1 or A.

120

Record Type G -- 1992 Geographic Codes and Entity Changes*
Field Type Fmt Beg End Size BV

RT L A
VERSION L N
STATE L N
COUNTY L N
CENID L N
POLYID R N
STATECU L N
COUNTYCU L N
FAIRCU L N
FMCDCU L N
FSMCDCU L N
FPLCU L N
CDCU L N

1
2

6
8
11
16

26
28
31
36

41
46
51

1
5

7
10
15
25

27
30
35
40

45
50
52

1
4

ouwhN

(4] aguwhN

N U

N
N

KKZZ 2222

L

Description and Notes

Record Type (Record Type is “G”)
Version Number (Value “0005”
identifies the 1992 TIGER/Line files)
FIPS State Code

FIPS County Code

Census File Identification Code
Polygon Identification Number
(number is unique to CENID)

Current FIPS State Code

Current FIPS County Code :
Current AI/ANA FIPS PUB 55-3 Code
Current County Subdivision FIPS PUB
55-3 Code

Current Sub-MCD FIPS PUB 55-3 Code
Current Place FIPS PUB 55~3 Code
Current 103*® Congressional District
Code

*Present only when different from Record Type 1 or A.

121

Record Type I: The Link Between Complete Chains and Polygons

Field Type Fmt Beg End Size BV

RT
VERSION

TLID

STATE

COUNTY

RTLINK

CENIDL

POLYIDL

CENIDR

POLYIDR

FILLER

L
L

[ol o

A
N

» a2z

1
2

6

16

18

21

22

27

37

42

52

1
5

15

17

20

21

26

36

41

51

52

1
4

10

R WN

10

10

N
N

222

Description and Notes
Record Type (Record Type is “I")
Version Number (Value “0005”

identifies the 1992 TIGER/Line files)

TIGER/Line™ Record ID Number
(Permanent complete chain
identification number)

FIPS State Code

FIPS County Code

Area Pointer Type Code (“P” = polygon

Identification code)
Census File Identification Code,
Side

Left

Polygon Identification Number, Left

Side (number is unigque to CENID)
Census File Identification Code,
Right side

Polygon Identification Number, Right

Side

Filler (to make even character count)
(contains a blank character space)

PRSI A NS

Record Type P—Polygon Internal Point

Field Type Fmt Beg End Size BV

RT
VERSION

STATE
COUNTY
CENID
POLYID

POLYLONG
POLYLAT

ol ol [l o

P

A
N

N
N
N
N

Z =z

1
2

6
8
11
16

26
36

1
5

7
10
15
25

35
44

1
4

N
N

Z2Z22

22

Description and Notes
Record Type (Record Type is “P”)

Version (Value “0005” identifies the

1992 TIGER/Line files)

FIPS State Code

FIPS County Code

Census File Identification Code

Polygon Identification Number, unique

to CENID

Longitude (Implied 6 decimal places)
Latitude (Implied 6 decimal places)

122

Record Type R—Record Number Range

Field
RT
VERSION

STATE
COUNTY

CENID
MAXID

MINID

HIGHID

FILLER

Type Fmt Beg End Size BV

L
L

bl o

A 1
N 2
N 6
N 8
N 11
N 16
N 26
N 36
A 46

1
5

7
10

15
25

35

45

46

10

1

N
N

Z2222

2

Description and Notes

Record Type (Record Type is “R”)

Version (Value “0005” identifies the
1992 TIGER/Line files)

FIPS State Code

FIPS County Code

Census File Identification Code

Maximum TLID Value for this CENID
(For all TIGER/Line™ files using this
CENID)

Minimum TLID Value for this CENID
(For all TIGER/Line™ files using this
CENID)

Current TLID Value (Used for this
CENID in this file version)

Filler (to make even character count)
(contains a blank character space)

See Appendix B for a list of field name changes since the 1990
Census TIGER/Line files.
Left-Justified (numeric fields have leading
zeros and may be interpreted as character data)
Right-justified (numeric fields do not have leading zeros,
and may be interpreted as integer data)
Alphanumeric

L

R

22y

Numeric

Blank value is valid
Blank value is not valid

123

124

APPENDIX C: 104th

DESCRIPTION

Physical Description

The collection was received as 1 CD-ROM with the label “House of Representatives,
104 Congress, TEXT (version 2-19-98), Office of the Clerk”. The CD_ROM contains
11,437 ASCII text (MS-DOS) files occupying 317 MB.

Information model

All files in the collection follow the naming convention
filename = <first><number><second>.txt
where <first> is one of the prefixes in [h he hj hr s sc sj sr]

It is our understanding that the two letters of the prefix represent the following
information about the origination of the specific document:

Prefix Meaning
h House of Representatives
he House of Representatives concurrent
resolution
hj House of Representatives joint resolution
hr House of Representatives resolution
s Senate
sc Senate concurrent resolution
sj Senate joint resolution
st Senate resolution

Table C-1. Document origin for the 104™ collection

The <number> in the file name is the actual number of the resolution or bill or act.

The <second> part of the file name is a suffix from the list: [as ath ats cdh cds cph cps
eah eas eh enr es hds ih ips is Ith pch pcs pp rch res rds rfh rfs rh rh2 rih ris rs rs2 rth rts
sc]. The meaning of each suffix is not entirely clear. However, we believe that the
suffixes refer to the place (House or Senate) where an action is being taken on the
document, and encodes the following meta-data:

Suffix Count Meaning
as 3 amendment in the Senate
ath 97 considered and agreed to in the House
ats 251 considered and agreed to in the Senate

125

cdh 6 considered in the House (and committed to a
commiittee)
cds 1 considered in the Senate (and committed to a
committee)
cph 19 considered and passed in the House
cps 20 considered and passed in the Senate
eah 36 resolved with amendments in the House
eas 115 resolved with amendments in the Senate
eh 887 enactment resolved in the House
es 270 enactment resolved in the Senate
enr 413
hds 3 held at the desk in the Senate
ih 4947 introduced in the House'
is 2271 introduced in the Senate
ips 4 indefinitely postponed in the Senate
Ith 8 laid on the table in the House
pch 1 placed on calendar in the House
pcs 184 placed on calendar in the Senate
PP 31 ordered to be printed as passed
rch 8 re-referred to the same or a different committee in
the House
res 6 re-referred to the same or a different committee in
the Senate
rds 187 received in the Senate
rth 103 referred to a committee in the House
rih 1 referred to a committee for a limited time in the
House
Iis 44 referred to a committee for a limited time to report,
or be discharged and placed on the calendar in the
Senate
rh 742 report in the House
Is 471 report in the Senate
rh2 1 2-part report in the House
152 3 2-part report in the Senate
rth 1 referred to committee in the House
| Its 5 referred to committee in the Senate
sC 1

Table C-2. Data Dictionary for the 104™

There appears to be some ambiguities in the naming convention. For example, the
distinction between the suffixes “rch” and “rth” is unclear. The suffix “sc” appears to be
inconsistent with the generally adopted convention of encoding where the document is

126

being acted upon. We strongly suggest that for a collection of the proceedings of the
Congress, such encoding of meta-data be made explicitly available.

127

APPENDIX D: VADY97

PHYSICAL SOURCE:
1 CD (33 MB) containing 640 digital objects

COLLECTION LEVEL STRUCTURE/META-DATA:
Main data: roll001.txt, ..., roll640.txt (640 files) each containing the data for exactly one
roll call vote

The exact format of this data is described in the file:
Vote_Ascii_Text_Record_Layout.txt

Additionally: HTML files (index.htm, ROLL_000.htm, ROLL_I100.htm, ...,
ROLL_600.htm (7 files), vote001.htm, ..., vote640.htm (640 files))

OBJECT LEVEL STRUCTURE/META-DATA:
Each object is a roll call vote and is highly structured (format: see
Vote_Ascii_Text_Record_Layout.txt)

Rollcall Vote Text_Record_Layout

Description Format Length Position Comment
Record [1]:
House/Committee Flag alpha 1 1 C or H
1 2 Blank
Rollcall # num 4 3-6
1 7 Blank
Bill/Issue Type alpha 10 8-17 H R, H Con Res, etc.
1 18 Blank
Bill/Issue # num 5 19-23
1 24 Blank
Amendment # num 3 25-27
1 28 Blank
Vote Type alpha 17 29-45 Quorum, Yea/Nay, etc.
Date of Vote num 8 46-53 YYYYMMDD
Time of Vote num 4 5457 HHMM
1 58 Blank
Question Type alpha 1 59 A, B, C, D, ... K
etc.
1 60 Blank
Results alpha 1 61 P or F (pass/fail)
Record [2]:
Question alpha 80 1-80 Text of question
Record [3]:
Total Yeas num 4 1-4 Members voting yea
Total Nays num 4 5-8 Members voting nay
Total Present num 4 9-12 Members voting pres
Total No Votes num 4 13-16 Members not voting
Democratic Yeas num 4 17~20 Democrats "o

128

Democratic Nays
Democratic Presents
Democratic No Votes
Republican Yeas
Republican Nays
Republican Presents
Republican No Votes
Independent Yeas
Independent Nays
Independent Presents
Independent No Votes

Description

Records [4] thru [# members voting]:

Member Name
Archive #
Party

Vote Preference

State Digraph

State Name

num
num
num
num
num
num
num
num
num
num
num

Format
alpha
num
alpha

alpha

alpha

alpha

R R R R D

Length

BRI RO

(200 i O

21-24
25-28
29-32
33-36
37-40
41-44
45-48
49-52
53-56
57-60
61-64

Position

Democrats o
Democrats o
Democrats v
Republican " °
Republican " "
Republican " "
Republican " "
Independent " "
Independent " "
Independent " "
Independent " "

Name

Blank

yr/mo/state/dist

Blank

D, R, or I

Blank

"YEA ", "NAY ",

"PRES", "NV "

Blank

"VA" etc.. or "XX"

Blank

"VIRGINIA" etc..
or "DELEGATES"

Note: Each record will be 82 chars long with cx/1f in position 81/82...
Numeric data is right justified, blank filled.

129

APPENDIX E: EAP

PHYSICAL SOURCE:
e 1 DAT tape 4mm containing 400 .tiff images (batch #1),
e 2 CDs containing ,jpg and .gif images (913 MB)
e 1 floppy disk (1.4MB) with a NAIL lookup table (SMB uncompressed)

COLLECTION LEVEL STRUCTURE / META-DATA:
The EAP objects (images) are grouped into:
e Dbatches: EAP\1 ... EAP\5

where each batch contains _
e up to 11 subdirectories, e.g. EAP\4\1 ... EAP\4\11

where each of these subdirectories contains
e up to 200 files

It seems that the organization into batches and subdirectories within the batches doesn’t
carry semantic information.

The filename XX-YYYYZ.EXT allows us to reconstruct some information:

o XX: batch number

e YYYY: number within batch

o Z: is T or A ("thumbnail"? vs "all"?)
o EXT: GIF/JPG

130

131

APPENDIX F: Vietnam

PHYSICAL SOURCE:
e 5 class 3480 tape cartridges (volume IDs: 007726, 008817, 009928, 5021, 2431)
containing ...

o 8 versions of the CACCF database, encoded in EBCDIC, and one hardcopy
documentation describing the record structure. In order to understand all
encodings, the corresponding DoD Instruction (7730.22 dated March 20, 1973)
has to be archived as well!

Each CACCEF file is a set of fixed-length data records, one record for each casualty. Due
to the highly regular structure, it is straightforward to design an XML DTD or a relational
database schema for this collection.

The structure of the test corpus is as follows: The CACCF collection consists of 8
different versions of the CACCF databases. Each of these versions is identifiable by a
creation date, which is apparently encoded into the filename of the source files as
follows:

RG330.CAC.<X><YY><MM><DD>
Here, X is either “P” or “C” (meaning unclear) and YYMMDD is the date.

132

APPENDIX G: AMICO

PHYSICAL SOURCE

The sample AMICO collection consists of about 50 images, including thumbnails (in jpg)
and full images (in tif), and about 70 meta-data records describing the art objects as well
as the digital image objects, with each record having about 150 attributes. The total size
of the collection sample is about 125MB.

COLLECTION LEVEL STRUCTURE/META-DATA

The procedures applied to the sample collection are exactly the same as the ones that will
be applied to the complete AMICO collection that will be made available to SDSC. The
image data files will be archived in HPSS via the SDSC Storage Resource Broker (SRB)
while the meta-data will be archived as searchable XML documents.

134

135

File Size

APPENDIX H: JTIC

PHYSICAL SOURCE
1 CD, 680 files, 388 MB.

Figure1. File Size Distribution

300000

250000

200000

150000

100000

0 100 200 300 400 500 600 700 800
File

The above collections of files has a skewed size distribution. Of the total size of 388MB,
a single file accounts for 297MB. The next two largest files account for about 7SMB
(50MB+25MB), and the subsequent two largest files account for about SMB
(4MB+1MB). The remaining 675 files account for the remaining 10MB. Figure 1 shows
the file size distribution for the remaining files. These sizes range from 24bytes to
264Kbytes.

Based on the analysis of file size distribution, the set of files can be grouped into three
clusters: less than 100KB, 100KB to 5M, and 5M to 500M. This can be a useful
classification scheme for archival storage purposes.

All the files associated with the JITC collection appear in a single directory. The input
does not contain an inherent directory structure. More than 80% of the files have a file
name extension (typically a 3-letter extension) as part of the file name (e.g., doc, jpg).

136 :

This extension can be used to classify files in the collection. Each collection can be
viewed as consisting of one or more sub-collections, where each sub-collection is a set of
files having the same file extension. Files that do not have such an extension will have to
be grouped together. In the JITC collection there are 114 such files that have no
extension.

137

